

Characterization of Contamination in PV Materials

Ian Mowat, Karol Putyera, Larry Wang, Temel Buyuklimanli and Gary Mount

810 Kifer Road, Sunnyvale, CA 94086

www.eaglabs.com

- Intro to EAG
- Contamination in PV materials
- Analytical methods

 ICPMS, GDMS, SIMS
- c-Si
- Thin film
 - a-Si
 - CdTe
 - CIGS
- Conclusions

Who is Evans Analytical Group?

- Established in 1978
- 15 locations in 8 countries
- 30+ analytical techniques
- Origins in semiconductor industry support
- Very active in PV sector for many years
 - We have developed considerable expertise in measurement of contamination

- All solar technologies can be improved with contamination control.
- Each solar technology has different issues and different contaminants that are important.
- Some elements have known effects.
- Other elements little known effect.
- Some cell designs are more sensitive than others to the same elements.
- To be useful: measurements need to be ACCURATE.
- To be useful: measurements need to be REPRODUCIBLE.

- Is sampling representative?
- Does the sampling method change the sample?
- Understand WHAT is being measured.
 - Inside/interior of sample?
 - Outside/exterior of sample?
 - Both?
- Understand the analytical method.

EAG Inductively Coupled Plasma Mass Spectrometry

Evans Analytical Group

- Survey analysis technique.
- PPM to PPB detection limits, depending on element.
- Relatively large sample size.
- Measures whole sample both interior and exterior.
- Does not measure 'atmospheric' elements.
- P, an important dopant, can be difficult.
- Solid samples must be dissolved completely prior to analysis.
- Sample prep potentially vulnerable to added contamination.

Glow Discharge Mass Spectrometry

GDMS

- Survey analysis technique
- PPM to PPB detection limits depending on element.
- Sample does NOT need to be dissolved.
- Direct sampling of all forms of solid PV materials.
- Sample prep contamination rarely an issue.
- SEMI Standard Test Method for PV Si (SEMI PV1-0309)
- Smaller sample size than ICPMS
- Measures mostly the sample interior.
- Does not measure 'atmospheric' elements.

Secondary Ion Mass Spectrometry

- PPM to PPT detection limits depending on element.
- <u>Does</u> measure 'atmospheric' elements H,C,N,O.
- Sample does NOT need to be dissolved.
- Sample prep contamination is generally not an issue.
- Direct sampling of all forms of solid PV materials.
- Generally measures the sample interior.
- Smaller sample size than GDMS.
- A few elements at one time.

c-Si

e-Grade / UMG / Solar Grade

Silicon feedstocks

- A few years ago polysilicon was in short supply and very expensive.
- Solar cell makers resorted to using relatively low grade silicon anything they could find
- Many new polysilicon producers have since come online, many with the goal of producing low cost high purity silicon using Siemens or 'Modified' Siemens process.

- There are no standards that say what contaminants and what levels are acceptable
- Without standards materials for PV applications are described in terms of `nines' or `N's (example: 99.9999% pure or 7 nines)
- Number of 'N's does not discriminate between elements that are important and those that are not.
- Number of 'N's excludes elements the measuring technique cannot measure!
 - Number of `N's typically excludes atmospheric elements.

A typical bulk SIMS analysis of PV Si grown by Siemens Process

SIMS Bulk A	Detection limits			
Elements	Conc.(at/cm3)	Conc.(ppbat)	Conc.(ppbwt)	Conc.(at/cm3)
В	4.9E+13	0.98	0.38	5E+12
Na	<4.0E+11	<0.008	<0.006	4E+11
AI	<6.0E+12	<0.12	<0.1	6E+12
Р	7.2E+13	1.44	1.59	5E+12
Cr	<3.0E+11	<0.006	<0.01	3E+11
Fe	<1.0E+13	<0.20	<0.4	1E+13
Ni	<1.0E+14	<2.00	<4	1E+14
Cu	<1.0E+14	<2.00	<4	1E+14
Zn	<2.0E+14	<4.00	<9	2E+14
K	<4.0E+11	<0.01	<0.01	4E+11
С	<3.0E+15	<60	<25	3E+15
As	8.4E+13	1.68	4.54	5E+12
Sb	7.8E+13	1.56	6.76	1E+13

- Silicon has 7N purity considering all listed elements
- Silicon has 8N purity if we exclude carbon

- Materials specifications based on `N's make it necessary to reduce contaminants that are not important for PV performance.
- Materials based on 'N's may be more expensive than they need to be.
- Rather than reducing all contaminants indiscriminately, wouldn't it make sense to focus on the most important for PV performance?

Four grades of 'Solar Grade Silicon' are proposed with Specifications for:

- 1. Acceptors: B, Al
- 2. Donors: P, As, Sb
- 3. Transition and Post Transition Metals: Ti, Cr, Fe, Ni, Cu, Zn, Mo
- 4. Alkali and Earth Alkali Metals: Na, K, Ca
- 5. Atmospherics: H, C, O, Cl
- Proposed specifications do not mention 'nines' or 'N's anywhere.
- Specifications related to the performance of PV cells.

Proposed Solar Grades

Grade	I	II		IV
Acceptors	< 2 ppba	< 20 ppba	< 300 ppba	< 1000 ppba
Donors	< 2 ppba	< 20 ppba	< 50 ppba	< 750 ppba
Total Al	-	-	-	< 1000 ppba
Bulk O	Not specified	Not specified	Not specified	Not specified
С	< 0.5 ppma	< 2 ppma	< 5 ppma	< 100 ppma
Transition Metals	< 10 ppba	< 50 ppba	< 100 ppba	< 200 ppba
Alkali and Earth Alkali	< 10 ppba	< 50 ppba	< 100 ppba	< 4000 ppba

• Proposal will be balloted in March 2011

Upgraded Metallurgical Grade Feedstock

- Recently it appeared UMG silicon would not have a place vs. low cost Siemens process.
- Futher improvements in UMG quality and its inherent low costs have given it new life.
- Siemens process silicon: \$50/kg
- UMG \$15/kg BUT need to know exactly what contaminants are present and how to handle them.

- Low cost solar requires low cost analyses.
- A more cost effective 'all-in-one' SIMS measurement was developed for B, P, C and O.

Protocol	В	С	0	Р
B,C,O,P together	1e14	2e16	5e16	2e14

- Detection limits will be sufficient for Si solar wafers and UMG-Si.
- Measurement can be made on thin Si solar wafers or Si chunks/pieces.
- Precision should be sufficient (15-20%, 3 sigma).
- Proposed Semi Test Method in ballot.

Comparing Test Methods

	SIMS	GDMS
В	1.1	0.8
С	9	-
0	30	-
Al	0.3	0.4
Р	8.1	11.4
Cr	<7E-5	<0.01
Fe	<0.001	1.3
Ni	<0.008 <0.01	
As	0.07	-

- Test results from different methods often show different results.
- Fe shows great differences, why?

SIMS Profile on Granule

- GDMS measures both inside and outside the particles and some Fe surface contamination will be included.
- SIMS bulk measurement excludes the surface contamination.

a-Si

α-Si / μc-Si

α-Si/µc-Si Layer Structure

- Amorphous/µc silicon structure and high hydrogen content makes this technology less sensitive to metallic contaminants.
- H content may have a role in the Staebler-Wronski effect and can be measured.
- C, N and O may affect the bandgap and may influence the Staebler-Wronski effect. These can be measured along with H.

H and Contaminants in α -Si by SIMS

[-

- 4

Evans Analutical Group

CdTe

CdTe Layer Structure

- There are no agreed upon standards for acceptable amounts of contaminants in CdTe
- Each company has their own specifications for contamination.
- Copper helps to make improved back contact and is expected through the CdTe film.

CdTe and CdS by GDMS

	CdTe p	owder	CdS powder		
	Detection Limit Typical Result		Detection Limit	Typical Result	
Element	ppba	ppba	ppba	ppba	
В	10	100	30	250	
Na	5	850	15	500	
Mg	5	200	3	180	
AI	4	150	15	740	
Si	20	3500	15	15000	
S	20	1800	-	-	
Ti	3	20	10	40	
Fe	10	1200	5	1100	
Ni	2	120	1	110	
Cu	2	75	1	70	
Zn	10	60	550	<550	
Se	150	1200	10	25	
Pb	3	12	1	60	

EAG Wetal Contaminants in CdTe/CdS/SnO by SIMS

$Cu_x(In_yGa_{(1-y)})_{(1-x)}Se_2$ (CIGS)

CIGS Layer Structure

- Like CdTe, there are no agreed upon standards for acceptable amounts of contaminants in CIGS
- There is no agreement on which elements are most important
- Each company has their own specifications for contamination.

Analysis of CulnGa by GDMS

Element	Mass Fraction, ppmw	Element	Mass Fraction, ppmw	Element	Mass Fraction, ppmw
Li	< 0.001	Ga	Matrix	Nd	< 0.001
Be	< 0.001	Ge	< 1	Sm	< 0.001
В	11	As	0.19	Eu	< 0.001
С	-	Se	0.5	Gd	< 0.001
N	-	Br	< 0.05	Tb	< 0.001
0	-	Rb	< 0.005	Dy	< 0.001
F	< 0.1	Sr	< 0.001	Но	< 0.001
Na	10	Y	< 0.001	Er	< 0.001
Mg	2.2	Zr	< 0.001	Tm	< 0.001
AI	4.8	Nb	< 0.5	Yb	< 0.001
Si	4.4	Мо	< 0.1	Lu	< 0.001
Р	7.6	Ru	< 0.005	Hf	< 0.001
S	36	Rh	< 0.5	Та	< 5
CI	2.2	Pd	< 0.01	W	< 0.05
К	2.2	Ag	2.9	Re	0.02
Ca	2.8	Cd	< 1	Os	< 0.001
Sc	< 0.001	In	Matrix	Ir	< 0.005
Ti	0.03	Sn	27	Pt	< 0.05
v	0.12	Sb	0.05	Au	< 0.1
Cr	110	Те	0.45	Hg	< 0.01
Mn	1.1	1	< 0.005	TI	0.43
Fe	70	Cs	< 0.005	Pb	2.8
Со	3.8	Ba	< 0.001	Bi	0.75
Ni	17	La	< 0.001	Th	< 0.001
Cu	Matrix	Ce	< 0.001	U	< 0.001
Zn	5.1	Pr	< 0.001		

72 elements in one measurement, most with 1ppb detection limit

Metal Contaminants in CIGS by SIMS

Analutical Grou

- Fe, Ni, Cr and Al are generally considered 'important'
- Detection limit of 0.1-0.01 ppm for 'all together' measurement

- Measure what matters
- Measure appropriately
- Full understanding of contaminant effects requires a detailed investigation of process steps
- Relating contaminant levels to performance is possible

