

FDSOI Metal Gate Transistors for Ultra Low Power Subthreshold Operation

S. A. Vitale, J. Kedzierski, P. W. Wyatt, M. Renzi, C. L. Keast MIT Lincoln Laboratory, Lexington, MA

Sponsored by DARPA MIT-LL Advanced Microsystems Technology Core Program

NCCAVS User Group Meeting 8 December 2010

This work was supported by the Defense Advanced Research Projects Agency under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors, and are not necessarily endorsed by the United States Government.

- Motivation
- FDSOI for Subthreshold Optimized Transistors
- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

• Motivation

- FDSOI for Subthreshold Optimized Transistors
- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

Conventional vs. Low Power Microelectronics

S.A. Vitale, NCCAVS, 2010

Bulk Silicon Subthreshold Transistors

switching energy, but at a 250x decrease in switching speed

• Motivation

• FDSOI for Subthreshold Optimized Transistors

- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

Advantages

Most efficient way to reduce power Highest g_m for given drain current Not mobility limited Equal NMOS and PMOS I_{on}/µm

Disadvantages

Slow switching speed I_{on} very sensitive to V_t Device matching more difficult Need higher voltage I/O transistor

Subthreshold-operation is a viable option for energy-starved applications

- Unattended ground sensors
- Embedded medical devices
- Space based sensors

FDSOI Advantage for Low Power

Silicon-On-Insulator Provides:

- Up to 90% lower junction capacitance
- Near ideal subthreshold swing
- Reduced device cross-talk
- Lower junction leakage
- Increased radiation hardness
- Reduced short channel effects

Fully depleted SOI allows higher performance at lower switching energy for subthreshold operation

Can we take a typical low power device and just turn down the operating voltage to 0.3 V?

Not with optimal performance. For conventional (SOI) transistors:

- 1. Subthreshold swing will be higher than necessary
- 2. V_t variation will be high due to:
 - SOI thickness variation
 - Random dopant fluctuations
- 3. Capacitance will be higher than necessary
- 4. NMOS on PMOS I_{on} will be wildly mismatched

The improved ULP transistor will have four key components: 1. FDSOI, 2. Undoped Channel, 3. Mid-Gap Gate, 4. Underlap S/D

Compared to Bulk Silicon

FDSOI exhibits 2.5x improvement in I_{on}/I_{off} ratio at 0.3 V

Compared to Bulk Silicon

Advantages

90% lower junction capacitance Near-ideal subthreshold swing Full dielectric isolation of transistor No substrate reverse bias effects Reduced short channel effects Reduced source-to-drain leakage

Disadvantages

Higher cost Silicon thickness control Floating body effects

Can be minimized through transistor engineering

Depletion depth:
$$T_{dep} = \sqrt{\frac{4\varepsilon \Phi_f}{qN_{ch}}}$$

- \rightarrow For <u>highly doped</u> channel (10¹⁸ / cm³), T_{dep} = 32 nm
- → For <u>lightly doped</u> channel (10^{15} / cm³), T_{dep} = 1,012 nm

Compared to PDSOI, FDSOI:

- 1. Is more difficult to fabricate due to thin silicon
- 2. Has higher series resistance
- 3. Is more susceptible to charge in the buried oxide
- 4. Has higher g_m
- 5. Has reduced floating body effects
- 6. More-ideal subthreshold swing

For <u>high performance</u> devices, the tradeoffs may favor PDSOI
For <u>ULP</u> devices, the tradeoffs favor FDSOI

SOI transistor design enables use of substrate biasing to match NMOS and PMOS transistors in subthreshold operation

FDSOI, PDSOI, and Bulk Comparison

Transistor Type	Bulk	PDSOI	FDSOI	
Approximate Substrate Cost (300mm)	\$180	\$500	\$500	
Active Silicon Thickness (nm)	>1000	~100	<40	
Subthreshold Swing (mV/dec)	>120	80-120	65-80	
Junction Capacitance	High	Low	Low	
Diode Leakage	High	Low	Low	
V _t Sensitivity to Si Thickness	None	Medium	High	
Extreme Environment Performance, (<4K or >300°C)	Poor	Good	Good	Not important for subthreshold ULP
Series Resistance	Low	Medium	High	
V _t Sensitivity to BOX Charge	None	Low	High	
Transconductance	High	Medium	High	
Kink Effect	None	High	Medium	

Subthreshold optimized FDSOI

- Motivation
- FDSOI for Subthreshold Optimized Transistors
- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

Threshold Voltage Tuning

selected as metal gate material for ultra-low power transistors

Effect of TiN Deposition Conditions

 N_2 /Ar flow ratio during reactive sputter deposition of TiN allows adjustment of workfunction between 4.30 and 4.55 eV

Effect of TiN Post-Deposition Anneal

Sub-atmospheric N₂ anneal increases workfunction and should improve reliability of TiN metal gate transistors

Effect of TiN Thickness

Workfunction Tuning

MIT Lincoln Laboratory

3

²⁴ S.A. Vitale, NCCAVS, 2010 1. N. Yang et al., IEEE Trans Elect. Dev. 46 (7) p. 1464, 1999

FDSOI ULP Gate Stack

FDSOI ULP Gate Stack

- Motivation
- FDSOI for Subthreshold Optimized Transistors
- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

Experimental TiN Metal Gate Transistors

Subthreshold Swing

- S is near-ideal at long gate lengths
- ${\boldsymbol{\cdot}}$ S increases as L_g decreases due to short channel effects
- Should improve by using thinner SOI

Equal I_{on} allows equal NMOS and PMOS transistor sizing and equal N and P device capacitance

Threshold Voltage Control

- Reduces V_t sensitivity to silicon thickness
- No Random Dopant Fluctuations
- Reduces channel length sensitivity to S/D anneal variations

 V_t variation improves from 18 mV to 8 mV (3 σ)

Reduced Capacitance

• S/D underlap and wider spacers reduce capacitance by 70%

- Motivation
- FDSOI for Subthreshold Optimized Transistors
- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

Circuit Verification Run

Novel ultra low power circuits from MIT-LL and 3 university partners

- 3 Level metal
- 150 nm design rules

Wafer Map of Functional Multiplier Circuits ~ 2,000 transistors

71% yield on best wafer

97 Stage Ring Oscillator (L_g=150nm)

Energy Harvesting Ring Oscillator

Potential for Ultra Low Power circuits requiring no battery

Currently in fabrication at MIT-LL Microelectronics Lab

- Enthusiastic response from design community
- Over 30 participating institutions
- Die area oversubscribed by 50%

Future Scaling

As gate length shrinks, subthreshold swing and DIBL degrade significantly

MIT Lincoln Laboratory

38 S.A. Vitale, NCCAVS, 2010

Future Scaling

- Motivation
- FDSOI for Subthreshold Optimized Transistors
- Metal Gate Electrode Workfunction Tuning
- Transistor Results
- Initial Circuit Results
- Summary

Summary

- FDSOI offers significant advantages for ultra low power operation
 - Lower capacitance
 - Improved subthreshold swing
 - Up to 50x reduction in energy-delay product
- Workfunction engineered TiN Metal Gate developed
 - Allows systematic adjustment of \boldsymbol{V}_t
- Subthreshold Optimized Transistors fabricated
 - 70% decrease in $C_{\rm gd}$
 - 55% reduction in across wafer V_t variation
 - NMOS / PMOS I_{on} ratio near 1
 - 65-70 mV/decade subthreshold swing (for L_q >200nm)
- 30+ Participant Multiproject Run in fabrication
 - Prior simple circuit test run demonstrated functional circuits
- Looking for collaborators interested in ultra-low-power process technology
 - Next Multiproject Run (2011) will be at 90nm design rules
 - Enabled by considerable new investment in MIT-LL Microelectronics Lab, including ASML 193nm lithography