

PLAD Advances: Hot n-type Implants and Control of Sidewall doping

Presented by: Deven Raj Global Applications, PLAD

Contributing Authors:

PLAD Fin Doping Control: Cuiyang Wang^{*}, Jonathan England, Hans Gossmann, Harold Persing, Tim Miller, Qi Gao, Shan Tang, and Siamak Salimian Applied Materials, Varian Semiconductor Equipment, Gloucester, MA 01930, USA

Hot PLAD Studies: Haoyu Li¹, Deven Raj^{*2}, Jeff Hu¹, Allen McTeer¹, Aseem Srivastava², Helen Maynard²

¹MICRON TECHNOLOGY, INC., BOISE, ID 83707, USA

²Applied Materials, Varian Semiconductor Equipment, Gloucester, MA 01930, USA

1. PLAD Overview

- 2. FinFET Doping by PLAD and Mechanism Study
- 3. N-Type PLAD Results and Characterization

3D FinFET SDE Doping Challenges

Plasma doping offers a simplified, photoresist compatible process

Implant Challenges and Heated Implantation

- Plasma Doping Advantages:
 - Pulsed DC bias allows for precision doping
 - Independent control of RF plasma generation and DC bias balances deposition and implant
 - Uniform and tunable sidewall or bottom doping
 - ► Highly productive at low energy, high dose regime

Enabling hot technology:

- ► Capable to 12 kV with up to 500 C platen temperature
- Leverages production-proven portfolio of high temperature platen technology
- Compatible with all available PLAD doping or materials modification chemistries
- Meets critical backside requirements for advanced devices

PLAD Advances: Hot n-type Implants and Control of Sidewall Doping

Presented at IWJT, 2017, Kyoto:

Sidewall Doping Mechanism and Profile Tuning on 3D Structure by Plasma Doping (PLAD)

Cuiyang Wang^{*}, Jonathan England, Hans Gossmann, Harold Persing, Tim Miller, Qi Gao, Shan Tang, and Siamak Salimian ISBN: 978-86348-626-3, *IEEE*

Characterization of Hot N-Type Doping Plasma Implantation (PLAD)

Haoyu Li¹, Deven Raj^{*2}, Jeff Hu¹, Allen McTeer¹, Aseem Srivastava², Helen Maynard² ¹MICRON TECHNOLOGY, INC., BOISE, ID 83707, USA ²Applied Materials, Varian Semiconductor Equipment, Gloucester, MA 01930, USA ISBN: 978-86348-626-3, *IEEE*

Suggested References:

- Combining Dynamic Modelling Codes with Medium Energy Ion Scattering Measurements to Characterise Plasma Doping », J. England et al., IBMM 2016
- NMOS Source-drain Extension Ion Implantation into Heated Substrates, L. Pipes et al. IEEE, Ion Implant Technology Conference, IIT 2014
- Plasma Implant Process, Z. Fang, *IIT 2016*

1. PLAD Overview

2. FinFET Doping by PLAD and Mechanism Study

3. N-Type PLAD Results and Characterization

Benefits and Challenges for PLAD FinFET Doping

Doping of Si Fin structures is a driven by multiple mechanisms and competing effects

PLAD Doping Modeling

- with 1nm of As neutrals on top, bottom and sidewall
- As & X* /2keV/5e15cm⁻² implanted
- Dopant profiles shown after clean
- * Knock in species

Reasonably good agreement between modeling and experiment1.5D SIMS.

Experimental profile after clean, anneal and DHF

Reasonably good agreement reached between experiment and modeling

Dopant Characterization Metrology

1.5D SIMS

- 1. Lower detection limit
- 2. Results can be quantified
- 3. Average over number of fins
- 4. No lateral resolution

EDS mapping/EDS line scans (EELS) Not good for B detection Lateral resolution 2. 3. Hard to quantify Fin resistor: active dopant V+ Fin V-

Each metrology has its limitations and the characterization results need to be interpreted carefully

Doping Profile tuning on 3D structure _ top vs sidewall

Increase parameter C

- ~5 times fin top dose increase
- No change in fin sidewall dose

Increase parameter P

- ~5 times fin sidewall dose increase
- ~60% increase in fin top dose

Fin top and sidewall dose can be adjusted separately with different process knobs

- 1. PLAD Overview
- 2. FinFET Doping by PLAD and Mechanism Study

3. N-Type PLAD Results and Characterization

Background: Intel Demonstrates Improved Drive I

NMOS Source-drain Extension Ion Implantation into Heated Substrates

Leonard C. Pipes, Lisa McGill, Anant Jahagirdar Logic Technology Development Intel Corporation Hillsboro, OR, USA

Fig. 1: TEM cross sections of silicon fins (A) immediately after room temperature implant, (B) after room temperature implant and a spike anneal (1 sec at \sim 1000°C), and (C) after heated implant alone (no anneal).

Fig. 3: SIMS profiles of 3.5 keV arsenic implanted at 30 degree incidence to wafer surface/fin top surface into fins nominally \sim 35 nm tall with \sim 42 nm pitch at room temperature and at 450 degrees.

Fig. 5a: Trigate NMOS linear drive current plotted versus off state source-to-drain leakage for representative wafers at room temperature, 450 deg C at 12 mA beam current, and 450 deg C at 2 mA beam current

Higher drive current achieved by minimizing extension resistance via heated implantation

AsH₃ PLAD: Cross-Section TEM of Damage Profile

Post RTP shows clear defect after room temperature process which is not observed when substrate heated

AsH₃ PLAD, 7 kV, 4e15 a/cm² Cross-Section TEM

AVS JTG, Summer 2017 Talk AVS JTG, Summer 2017 Talk

Reduced amorphous depth at 450 C evidenced by as-implant response Less deposition observed by lower peak As in each 450 C condition

PLAD: AsH_3 PLAD, 7 kV, 4e15 a/cm²

Rs vs. Xj of Arsenic Implanted Processes

Fundamental Implant Damage and Recovery Model Drives Implantation and PLAD to same Rs vs. Xj Curve Optimization Along the Curve is Achievable by Both Techniques

> Implant: As+, 7 keV, 4e15 a/cm² PLAD: AsH₃ PLAD, 7 kV, 4e15 a/cm²

- PLAD has been in mass production for multiple applications for several years
- Plasma doping of Fin structures by an implant based approach has been demonstrated
- Efforts to enhance fundamental understanding and to enable predictive approaches are in progress
- Dopant profile and damage control in silicon demonstrated using heated PLAD capability
- Heated implantation expands process space for next generation devices in doping and material modification applications

