

Low Contact Resistance on p-SiGe Junctions with B / Ga Implants and Nanosecond Laser Anneal

Fareen Adeni Khaja

Technical Product Marketing, Front End Products Transistor and Interconnect Group Applied Materials

NCCAVS Junction Technologies User Group Meeting July 14th, 2017

Outline

Motivation for Contact Resistivity (pc) Reduction

- Si_{0.55}Ge_{0.45} (Applied Materials Internal Data)
 - Experimental Details
 - Results and Discussion
- Si_{0.40}Ge_{0.60} (Applied Materials IMEC Collaboration)
 - Experimental Details
 - Results and Discussion

Summary

Contact Interface Impact to Performance

- Fin pitch scaling reduces contact area → increases Rc
- Tall fin height results in increase of S/D resistance (RSD)
- External resistance is limiting transistor performance

Require Innovative doping and Annealing solutions for NFET & PFET to reduce Rc and RSD

Outline

Motivation for Contact Resistivity (pc) Reduction

- Si_{0.55}Ge_{0.45} (Applied Materials Internal Data)
 - Experimental Details
 - Results and Discussion
- Si_{0.40}Ge_{0.60} (Applied Materials IMEC Collaboration)
 - Experimental Details
 - Results and Discussion

Summary

Si_{0.55}Ge_{0.45} (Applied Materials Internal Data)

- Title: Ultra-low (1.2x10⁻⁹ Ωcm²) p-Si_{0.55}Ge_{0.45} Contact Resistivity (ρ_c) using Nanosecond Laser Anneal for 7nm Node and Beyond
- Authors: Chih-Yang Chang, Fareen Adeni Khaja, Kelly E Hollar, K.V. Rao, Christopher Lazik, Miao Jin, Hongwen Zhou, Raymond Hung, Yi-Chiau Huang, Hua Chung, Abhilash Mayur, Namsung Kim
- Publication: The 17th International Workshop on Junction Technology (IWJT 2017), Kyoto, Japan

Experimental Details: Process Flow

Pre-Silicide Contact I/I : 1. Ga⁺ ion implant 2. B⁺ ion implant

Pre-Silicide Anneal:

- 1. Nanosecond Laser Anneal (NLA)
- 2. Millisecond Laser Anneal (Astra[™] DSA)

C-Y. Chang et al., IWJT 2017

Contact Resistivity Extraction

Rc extraction

C-Y. Chang et al., IWJT 2017

Q

APPLIED MATERIALS

Nanosecond Laser Anneal Result of Contact Chains

Si_{0.55}Ge_{0.45}:B Epi–Contact Chains

- By adding I/I obtain 30% ρ_c reduction and NLA can have 67% further ρ_c reduction

Si_{0.55}Ge_{0.45}:B Epi-85 nm diffusion line

• Significant improvement in diffusion line resistance

NLA enables super-activation of implanted dopants and dopants in the Epi film

DSA Millisecond Laser Anneal Result of Contact Chains

Si_{0.55}Ge_{0.45}:B Epi–Contact Chains

Si_{0.55}Ge_{0.45}:B Epi-85 nm diffusion line

- Similar ρ_c observed with B and Ga implant post DSA 1000°C anneal

 No change in resistance of 85 nm diffusion line

Contact Chain's Median Contact Resistivity vs. NLA Fluence

NLA demonstrated 67% ρ_c improvement (3.4x10⁻⁹ \rightarrow 1.2x10⁻⁹ ohm-cm²)

TEM images of contact chain with NLA

Optimal laser fluence is critical for recrystallization without void formation

Summary of ρ_c for the p-Si_{0.55}Ge_{0.45} wafer splits

$\rho_{\rm c}$ (ohm-cm ²)		
_		

C-Y. Chang et al., IWJT 2017

R_c Comparison between Pre and Post Forming Gas Anneal for 55nm Kelvin contact with B implant and NLA

No significant change in ρc post FGA → No deactivation after FGA

Si_{0.55}Ge_{0.45} Summary

- We demonstrated ultra-low (1.2x10⁻⁹ ohm-cm²) p-Si_{0.55}Ge_{0.45} contact ρ_c by using cold implant and advanced NLA on contact chain structures.
- Implant and Anneal Optimization is required for achieving low ρ_c .
- No dopant deactivation was observed after forming gas anneal (FGA) for 30min at 400°C.
- These new process technologies provide a pathway to achieve the target ρ_c required for transistor performance in advanced logic devices for 7 nm and beyond.

C-Y. Chang et al., IWJT 2017

Outline

- Motivation for Contact Resistivity (pc) Reduction
- Si_{0.55}Ge_{0.45} (Applied Materials Internal Data)
 - Experimental Details
 - Results and Discussion
- Si_{0.40}Ge_{0.60} (Applied Materials IMEC Collaboration)
 - Experimental Details
 - Results and Discussion

Si_{0.40}Ge_{0.60} (Applied Materials – IMEC Collaboration)

- Title: Sub-10⁻⁹ Ω.cm² Contact Resistivity on p-SiGe Achieved by Ga Doping and Nanosecond Laser Activation
- Authors: J-L. Everaert¹, M. Schaekers¹, H. Yu^{1,2}, L.-L. Wang^{1,2,3}, A. Hikavyy¹, L. Date⁴, J. del Agua Borniquel⁴, K. Hollar⁴, F. A. Khaja⁴, W. Aderhold⁴, A. J. Mayur⁴, J.Y. Lee⁵, H. van Meer⁵, Y.-L. Jiang³, K. De Meyer^{1,2}, D. Mocuta¹, N. Horiguchi¹
 ¹IMEC, Leuven, Belgium ^{;2}KULeuven, Leuven⁻ Belgium ^{;3}Fudan University, Shanghai, China ^{;4}Applied Materials, Sunnyvale, USA ^{;5}Applied Materials, Gloucester, USA
- Publication: 2017 Symposia on VLSI Technology and Circuits (VLSI 2017), Kyoto, Japan

Experimental Details

IMEC CTLM Process Flow

- 300mm lightly doped S wafer
- n-well formation
- o SiGe epitaxy
- Ga ion implant
- Anneal : spike or scanning laser or pulsed laser
 MR-CTLM patterning : dielectric deposition,
 lithography, etching.
- Contact metallization :Ti/TiN deposition
- Cu barrier deposition
- Cu plating and CMP

IMEC CTLM Test Structures

- Resistance (R) of the CTLM structure is measured using 4PP
- By fitting R as function of spacing of different structures, R_s and ρ_c are obtained

J-L. Everaert et al., VLSI 2017

Comparison of $R_s \& \rho_c$ for Ga vs. B in Si_{0.40}Ge_{0.60}: Spike anneal vs. DSA

Based on SIMS, T>800°C causes strong diffusion for Ga

J-L. Everaert et al., VLSI 2017

Comparison of R_s & ρ_c for B implant in Si_{0.40}Ge_{0.60} with NLA

Comparison of R_s & ρ_c for Ga implant in $Si_{0.40}Ge_{0.60}$ with NLA

Summary of Results

OVERVIEW OF NLA CONDITIONS WITH EDS AND ELECTRICAL RESULTS								
Sample#	Pulse Length	Energy Fluence (A.U.)	# Pulses	Melt Depth (nm)	%Ga	R _s (Ω/sq)	ρ_{e} (10 ⁻¹⁰ $\Omega.cm^{2}$)	
1	short	0.16	Multiple	15	11.6	246	1.3	
2	short	0.48	Multiple	55	5.1	84	8.4	
3	long	0.32	Multiple	13	8.3	360	6.1	
4	long	0.64	Single	13	7.1	264	4.7	
5	long	0.64	Multiple	15	7.7	246	3.4	

J-L. Everaert et al., VLSI 2017

Si_{0.40}Ge_{0.60} Summary

- Ga I/I & NLA results in sub-10⁻⁹ Ω .cm² ρ_c
- SiGe:Ga has lower melt laser onset energy than SiGe:B
- Melt laser on SiGe induces Ge segregation towards the surface
- Ti/Ge intermix at the Ti/SiGe interface
- Ga conc. peaks at the Ti/SiGe interface
- Higher Ga conc. at the Ti/SiGe interface lowers the ρ_{c}

J-L. Everaert et al., VLSI 2017

Thank you

