

Ultra-Shallow Junction Formation on 3D Silicon and Germanium Device Structures by Ion Energy Decoupled Plasma Doping

YS Kim & Hyuckjun Kown

CTD, Lam Research

© 2017 Lam Research Corp. | EAG 2017 1

Overview

Introduction and challenges

- Challenges on device
- USJ on 3D structure

► Plasma-assisted doping (PaD) on Si

Previous work for plasma-assisted doping on Si

Annealing vs Doping on Si

PaD vs ALD vs GaP vs SOD

Plasma-assisted doping on Ge

- Various annealing for junction depth and P level
- Plasma-assisted doping on Ge

Summary

Overview

Introduction and challenges

- Challenges on device
- USJ on 3D structure for <10 nm node</p>
- ► Plasma-assisted doping (PaD) on Si
 - Previous work for plasma-assisted doping on Si
- ► Annealing vs Doping on Si
- ► Plasma-assisted doping on Ge
 - Various annealing for junction depth and P level
 - Plasma-assisted doping on Ge
- ► Summary

Man Made "Intelligent" but Power Inefficient System

AlphaGo handily beat world Go champions

74,000W

AlphaGo: employs 1200 CPU's and 280 GPU's in 2016

Human brain: 12W!

15% power reduced in 2017

Demands on Surface Engineering Due to Increasing of Both R and C Components on <10 nm Node Device

Overview

- Introduction and challenges
 - Challenges on device
 - USJ on 3D structure for <10 nm node</p>

Plasma-assisted doping (PaD)

- Previous work for plasma-assisted doping on Si
- ► Annealing vs Doping on Si
- ► Plasma-assisted doping on Ge
 - Various annealing for junction depth and P level
 - Plasma-assisted doping on Ge
- ► Summary

Comparison of Conformality for 3D USJ with Various Doping Schemes

► To form shallow junction on 3D structure, reducing ion energy and increasing ion scattering will be necessary

PLAD

(Plasma Doping)

 \leftarrow

 \leftarrow

 \leftarrow

Monolayer doping by deposition of dopant will be an alternate option

 \rightarrow

 \rightarrow

 \rightarrow

Beamline I²P

Ľ

Comparison of PaD with Typical PLAD (with Bias) Y.Kim et al, IWJT 2016

Rs from pre-treat but no bias power added is compatible with PLAD

Outline

- Introduction and challenges
 - Challenges on device
 - USJ on 3D structure for <10 nm node</p>
- ► Plasma-assisted doping (PaD) on Si
 - Previous work for plasma-assisted doping on Si

Annealing vs Doping on Si

- ► Plasma-assisted doping on Ge
 - Various annealing for junction depth and P level
 - Plasma-assisted doping on Ge
- ► Summary

Various Annealing on PaD Processed Si Samples

- Junction depth can be optimized by annealing condition to form USJ
- Dopants activation confirmed with Rs measurement and SRP

X_i with Various Doping Technique vs. Annealing

- Junction depth can be optimized by optimizing annealing condition to form USJ
 - Dopants activation confirmed by SRP
- Shallowest X_i can be produced by either ALD or MLD (GaD here)
 - Dopant level with ALD is higher than MLD due to encapsulated surface to reduce out-diffusion
 - Highest dopant level can be produced by PaD with LA or FLA

Dopant Level and Junction Depth (X_j) <u>Doping vs. Annealing Technique</u>

Dopant level at Si surface can be increased by plasma-assisted doping, while GaD/MLD shows the lower level due to its limited dopant source

- Highest dopant level can be produced by PaD with LA or FLA
- Dopants activation confirmed by 4pt-pb & SRP

► Shallowest X_i can be produced by laser annealing with the similar surface P level

Outline

- Introduction and challenges
 - Challenges on device
 - USJ on 3D structure for <10 nm node</p>
- ► Plasma-assisted doping (PaD) on Si
 - Previous work for plasma-assisted doping on Si
- Annealing vs Doping on Si

Plasma-assisted doping on Ge

- Various annealing for junction depth and P level
- Plasma-assisted doping on Ge
- ► Summary

Issue of N Dopants on Ge

Plasma-Assisted Doping for P Doping on Ge With vs. Without Plasma: As Doped

No significant effect of wafer temperature is seen on plasma-assisted doping level at Ge surface

To Increase P Level on Ge Annealing Variation and Other Enhancement

Enhanced P Level of Plasma-Assisted Doping on Ge After RTP 600C, 30 sec

- P level after activation annealing by RTP is ~1E21
- P Enhancement with other annealing will be the option to increase the level
- Steeper profile is expected as FLA or LA will be applied

Executive Summary

- Novel process approach has been developed to form USJ on 3D structure of Si and Ge using plasma
- Novel approaches increase P dopant level and lowers Rs further, therefore, conformal doping on 3D structure can be enabled without bias power
 - No structure damage has been observed
 - Confirmed that doping with no bias power forms shallow X_i depth of <7 nm on 3D structure
- Finally various annealing could reduce X_j to <5 nm</p>

Doping on 3D Structure

Innovative **Technology** Trusted **Productivity** Fast **Solutions**

