

Moore's Law Continues into the 1x-nm Era

Dick James Senior Fellow/Technology Analyst Chipworks

NCCAVS JTG User Group Meeting SemiconWest July 14, 2016

The Last Few Generations

90nm

45nm

32nm 22nm 14nm

Litho 248 nm \longrightarrow 193 nm dry \longrightarrow 193 nm wet \longrightarrow DP Low-k dielectrics 1st gen \longrightarrow 2nd gen \longrightarrow 3rd gen \longrightarrow Strained channels.

Introduction

- Planar transistor high-k, metal-gate (HKMG) parts are in volume production down to the 20-nm generation, in gate-first and gate-last technologies
- HKMG tri-gate (finFET) devices are now also manufactured in high volume, in CPU and SoC formats
- Let's look at some!

Qualcomm MDM9235 (TSMC 20 nm HPM HKMG Process)

20HPM PMOS Transistors

- PMOS gate stack formed before NMOS
- Contacted gate pitch (CGP) ~90 nm
- Minimum observed gate length (MOL_g) ~28 nm,
- T_{ox} ~1.4 nm, t_{hi-k} ~1.3 nm cf 28HP t_{ox}
 1.4 nm, 28 HPM 1.5 nm, 28HPL 2.0 nm
- Work-function materials similar to 28-nm process – PMOS is TiN
- Raised source/drain epi with e-SiGe, graded -> ~40% Ge

TECHINSIGHTS chip

works

20HPM NMOS Transistors

- Minimum observed gate length 31 nm
- Raised source/drains, stacking faults for stress (like Intel 32-nm)
- TiAIN work-function material, similar to 28-nm process
- <110> channel
- AICoCu gate fill with AIO cap

Samsung Exynos 5430 (20 nm Gate-Last HKMG Process)

Samsung 20 nm PMOS Transistors

- Samsung's 1st generation gate-last, replacement gate HKMG process
 - High-k formed after polySi removal
- 193 nm immersion lithography
- PMOS e-SiGe graded to ~50%.
- T_{ox}~1.7 nm, t_{hi-k}~1.4 nm
- Work-function materials similar to Intel/TSMC processes – PMOS is TiN

Samsung 20 nm NMOS Transistors

- Contacted logic gate pitch 90 nm
- Minimum metal pitch 80 nm
- Minimum observed gate length ~30 nm
- T_{ox} ~1.7 nm, t_{hi-k} ~1.0 nm
- Work-function materials similar to Intel/TSMC processes – NMOS is TiAIN

IBM POWER 8 Server Processor (22 nm SOI Gate-First HKMG Process)

IBM/GF 22HP Transistors

- TiN metal layer under polysilicon gate, CGP ~98 nm, t_{ox} ~1.0 nm, t_{hi-k} ~1.3 nm
- SOI layer ~82 nm thick
- PMOS e-SiGe source/drain (S/D), Ge graded -> 30% Ge
- PMOS e-SiGe channel -> 25% Ge
- NMOS e-Si S/D tubs (claimed eSi:C^[1,2]), also doped with 2% Ge (likely for stress relaxation or to control phosphorus out-diffusion)
- Aluminum on hafnium-based gate dielectric to adjust WF in PMOS, likely lanthanum for NMOS
- NiPt-silicided S/D and gate
- Raised S/D in both NMOS and PMOS
- Dual stress liner

 "22nm High-performance SOI technology featuring dual-embedded stressors, Epi-Plate High-K deep-trench embedded DRAM and self-aligned Via 15LM BEOL", Narasimha, S., et al., IEDM 2012.

All content © 2016, Chipworks Inc. All rights reserved.

[2] "Performance-optimized gate-first 22-nm SOI technology with embedded DRAM.", Freeman, G., et al. *IBM Journal of Research and Development* 59.1 (2015): 5-1.

Analyzing finFETs – TEM sample artefacts

TEM Sample Artefacts

Intel tri-gate schematic

- TEM images through a thin sliver of sample material
- Typical TEM sample thickness 30 100 nm
- CGP \rightarrow 70 nm, Lg ~20 30 nm, fin width 5 15 nm
- Almost inevitably get more than one feature in depth of sample

TEM Sample Artefacts

Intel 22 nm finFETs – plan view SEM image

10-nm thick PMOS sample

Intel Broadwell (14 nm HKMG finFET Process)

Intel 14-nm Broadwell

Etched back to STI

chipworks

Etched back to substrate

- Contacted gate pitch ~70 nm
- Nominal fin pitch ~42 nm

Intel 14-nm Broadwell

- Vertical fins! But still rounded fin tops.
- Multiple steps to achieve fin profiles after fin etch, fin width 7 – 11 nm
- Functional fin height ~37 40 nm, gate wrap-around ~85 nm, effective gate width for single-fin transistor.

- Asymmetric stress deforms fins
 - Leftmost fin leans left
 - Rightmost fin leans right

Intel 14-nm – PMOS Gates

- MOLg ~22 nm, PMOS gates formed first
- TiN WF material, t_{ox}, t_{hi-k} ~1.0 –
 1.2 nm
- Epi SiGe in source-drains, isotropic cavity etch
- Gates back-etched and filled with dielectric, allows selfaligned contacts

Intel 14-nm – NMOS Gates

- TiAIN WF material, t_{ox} ~1.1 nm, t_{hi-k}
 ~1.2 nm
- Epi SiGe in source-drains, isotropic cavity etch
- Ti silicide, not Ni
- Gates back-etched and filled with dielectric, allows selfaligned contacts

Intel 14-nm – Source/Drains

- PMOS epi-SiGe takes <111> planes as in 22-nm
- NMOS epi takes <111> planes at base
 - Cavity etch used
- SWS etched before S/D epi growth in PMOS and NMOS
- And.. here be airgaps!

Intel Solid-Source Diffusion Punchstopper

- Intel solved one of the biggest problems with bulk FinFETs, putting in a self-aligned punchstop
- Allows a bulk FinFET to be undoped, assuming multi-WF RMG
- Reduces random doping variation

21 All content © 2016, Chipworks Inc. All rights reserved.

TECHINSIGHTS chipworks

Intel 14 nm Atom "Cherrytrail" SoC

Intel 14 nm Atom "Cherrytrail" SoC

PMOS

- Logic transistors same as Broadwell microprocessor
- HV MOS similar fins and 42 nm pitch with nearly vertical sidewalls and almost flat top as LV MOS.
- HV CGP ~220 nm, 150 nm gate length transistors
- Thicker t_{ox} (4.0 nm 4.5 nm), same gate stack
- Merged SiGe epi and unmerged Si epi
- Similar passives to 22-nm SoC

23 All content © 2016, Chipworks Inc. All rights reserved.

merged Si

NMOS

Samsung Exynos 7420 (14 nm Gate-Last HKMG FinFET Process)

Samsung 14 nm finFETs

- First generation tri-gate transistors, 2nd generation RMG process
- Minimum fin pitch ~48 nm, SADP litho to define fins
- CGP ~78 nm, single patterning plus cut mask (limit for 193 nm immersion)
- Distinct fin isolation and well isolation

25 All content © 2016, Chipworks Inc. All rights reserved.

Samsung 14 nm PMOS Transistors

- MOL_g ~28 nm, gate width ~80 nm
- T_{ox} ~1.2 nm, t_{hi-k} ~1.3 nm
- Work-function materials similar to Intel/TSMC processes PMOS is TiN

TECHINSIGHTS chipworks

E-SiGe for stress, -> 40% Ge

Samsung 14 nm NMOS Transistors

- MOL_g ~27 nm, gate width ~85 nm
- Fin width ~7 nm at half fin height
- Work-function materials similar to Intel/TSMC processes NMOS is TiAl + TiN (with C from ALD)
- T_{ox} ~1.2 nm, t_{hi-k} ~1.3 nm
- Si epi for NMOS

Samsung 14 nm Source/Drains

- Epi in both cases takes <111> planes, and merged, unlike Intel
- Ti silicidation
- Significant etching of the PMOS epi during the contact etch, dislocations in NMOS e-Si

28 All content © 2016, Chipworks Inc. All rights reserved.

Apple APL1022 Application Processor (TSMC 16-nm FinFET HKMG Process)

Apple APL1022 Application Processor

- First generation tri-gate transistors, 3rd generation RMG process
- Minimum fin pitch ~48 nm, CGP ~ 90 nm, SADP litho to define fins
- Functional gate height ~39 nm, gate width ~85 nm
- PMOS formed before NMOS; P + N WF layers in PMOS allows less room for W gate fill
 All content © 2016, Chipworks Inc. All rights reserved.

TSMC 16 nm PMOS Transistors

TECHINSIGHTS chipworks

- Gates back-etched, capped with SiN
- MOL_g ~30 nm, TiN WF layer, t_{ox}, t_{hi-k} ~1.3 nm
- Cavity etch for source/drains, backfilled with SiGe epi
- ~4 nm t_{ox} in I/O transistors, longer gate lengths allow W fill

31 All content © 2016, Chipworks Inc. All rights reserved.

TSMC 16 nm NMOS Transistors

- Gates back-etched, capped with SiN
- $MOL_g \sim 30 \text{ nm}$, WF layer TiAlCOF, t_{ox} , $t_{hi-k} \sim 1.3 \text{ nm}$
- Cavity etch for source/drains, backfilled with Si epi
- ~3.5 nm t_{ox} in I/O transistors, longer gate lengths allow W fill_

TECHINSIGHTS chipworks

32 All content © 2016, Chipworks Inc. All rights reserved.

TSMC 16 nm Source/Drains

- PMOS e-SiGe has typical diamond shape, —> 55% Ge
- NMOS e-Si heavily gouged by contact etch
- Titanium used for silicidation

Summary & Conclusions

- Definitely into the finFET era!
- Reviewed the last three 20/22-nm planar, 14/16 nm finFET transistors
- We see a large degree of commonality in the final devices
 - RMG gate dielectric high-k/oxide thicknesses all settled in the 1.0-1.3 nm range
 - Fin profiles and dimensions, and gate widths, are similar
- Detail differences in gate stacks and capping layers.
- Gate lengths/ fin pitch dependent on final performance
 - Foundries use $L_a 28 30 \text{ nm}$, FP ~48 nm
 - Intel uses ~22 nm, FP ~42 nm
- Double patterning (SADP) now standard
- 10 nm in 2017?

Acknowledgements

I would like to thank Chipworks' laboratory staff and process analysts for all the hard work of analyzing these complex devices. They did a great job!

