Process Uniformity Improvements for LSA Millisecond Annealing in the FinFET era

Jim McWhirter, Ph.D.
July 16, 2015
LSA Logic Processes vs. Device Node

Planar: HKMG
- S/D anneal
- S/D ext anneal
- SMT
- NiSi

Planar: Poly & HKMG
- S/D anneal
- S/D ext anneal
- SMT
- NiSi

FinFET
- S/D ext anneal
- S/D anneal
- SMT
- High k anneal
- Re-activation anneal
- Ti Silicide formation

28nm → 20nm → 16/14nm

Decreasing thermal budget and new materials leads to new applications for LSA, and drives trend towards dual-beam and ambient control configurations.
Advanced Logic Device Scaling Trend

- Device structures approach atomic scales → precise process control more critical

Device Structure

<table>
<thead>
<tr>
<th></th>
<th>28nm</th>
<th>20nm</th>
<th>14nm</th>
<th>10nm</th>
<th>7nm</th>
<th>5nm</th>
<th>3nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Structure</td>
<td>Planar</td>
<td>FinFET</td>
<td>Stacked Nanowire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Material

- SiGe
- Ge
- III-V
Example: Power Reduction ($V_{dd} \rightarrow \sigma_{V_t}$)

Synopsis: WMED’13

- Roadmap puts pressure on all processes to reduce critical device parameter variations
- MSA thermal anneal process variation must improve to advance the roadmap.

"With a goal to reduce close to 50% of the supply voltage ($V_{dd} < 0.5-0.6V$) relative to today’s most advanced microprocessors in production, significant improvements of transistor short-channel electrostatics as well as performance are sought."

Solid State Technology

Insights for Electronics Manufacturing

FinFET evolution for the 7nm and 5nm CMOS technology nodes

AARON THEAN, imec, Leuven, Belgium

"*The data is for the $L_{min} W_{min}$ transistor"

Synopsis: WMED’13
Within Die Uniformity & Parametric Yield

- Variations in pattern density lead to local variations in the absorbed radiation during RTP or millisecond anneal.
- This can lead to local variations in peak temperature, and variations in performance of devices which are supposed to be matched.
 - E.g., SRAM cell inverters, Poly-resistor matching for mixed-signal
- Thermal process uniformity within-die is critical.

Device Performance Mismatch!

Pattern loading effects during millisecond annealing or RTP can cause device performance mismatch within the die → parametric yield loss and degraded circuit speed
LSA101/201 Overview

Key Attributes

- Within Die Uniformity
 - CO2 Laser: \(\lambda \sim 10\)um
 - P-polarized, Brewster’s angle
- Within-Wafer Uniformity
 - Real time temperature control.

Dwell time = \(\frac{w}{v_x} \)

IR Thermal Emission from Wafer During Process

Short Axis Profile

Long Axis Profile
Pattern Loading Effects in Millisecond Annealing: Equipment Solution (LSA)

LSA

- Long λ
- Brewsters Angle
- No shadowing or light trapping by Fins

ΔT ~ 10°C

Flash Anneal / Diode Laser

- Short λ
- Near normal incidence
- Can have light trapping by Fins

ΔT > 100°C

LSA provides an equipment solution for PLE in millisecond annealing
Process Uniformity Improvements for LSA

- Existing LSA process uniformity has been sufficient through the 14nm node.
- In response to roadmap trends for ≤10nm, Ultratech embarked on a project to improve the LSA process uniformity.
- We will report here on the results of this work.
- The project culminated in a combination of hardware/system design modifications/additions:
 - New optics
 - For profile shape control.
 - Three new optical components, replacing existing optics.
 - New feedback control system
 - “Emission Profile Control”, EPC
 - Dynamic (in-process real time) control of process profile.
 - These components are fully field-upgradable on the LSA101/201 family of laser annealing systems.
Interpreting Emission Profile Data

Emission signal (E) captured by CMOS camera is very sensitive to temperature (T).

\[\frac{\Delta T}{T} = \frac{1}{N} \frac{\Delta E}{E} , \quad \text{and} \quad N \approx 12 \]
Process Beam Stability

Average emission profile

Overlay of frame-by-frame emission profiles

- Process beam is well-controlled by temperature feedback system at center
- Edges of beam have larger variation.
 - Use of 50% overlap helps average this out.
- Goal: Improve whole-beam stability
 - Improved process uniformity
 - Enable higher throughput operation (larger step)

\[\frac{\Delta T}{T} = \frac{1}{N} \frac{\Delta E}{E}, \quad \text{and} \quad N \approx 12 \]
Beam Stability: Cross-Stripe Correlation

- Analysis shows that opposite sides of profile are statistically “anti correlated”
- Variation on left and right are random, but not statistically independent.
- This realization led to “Emission Profile Control (EPC)” concept.
EPC Feedback System Performance

EPC Error Signal Open Loop

EPC Error Signal Closed Loop

EPC Signal = InGaAs₂ - InGaAs₁

EPC Signal Histogram

EPC ON
EPC OFF
Die Scale Uniformity

- Beam variation in time/frequency domain translate to thermal process variation in distance/spatial-frequency on the wafer.
 - Based on stage speed.
- EPC system significantly improves within-die profile stability.

Frequency Spectra of Beam Stability (Slope)
Emission Profile Control: Profile Stability

Beam Profile Metric (BPM)
- Compares profile to stored reference.
- Numerical algorithm returns a number representing degree of match.
- Zero = perfect match (lower number is better)

- Emission Profile Control (EPC) improves process profile stability by >5x
- Enables maintaining or improving C_{pk} with tighter process windows
Major System Events: Profile Stability With EPC

- Alignment motor moved on purpose – EPC corrects.
- Profile recovery immediately after gas change – EPC maintains profile during laser warm-up
- Laser shutter closed, optics cooled, then opened.
- EPC maintains profile as optics regain thermal equilibrium.

EPC Maintains and Recovers Profile Quickly Improved Uptime
Process Uniformity Results

• Process uniformity results based on Rs measurements from post-annealed wafer.

• Implant Conditions
 • Substrate 20-40 ohm-cm
 • B Implant
 • 2.0E15/cm²
 • 5keV
Whole Wafer Process Uniformity

Day 1

Day 2

Day 3

<table>
<thead>
<tr>
<th>Day</th>
<th>Center</th>
<th>Whole Wafer (3mm MEE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0%</td>
<td>1.2%</td>
</tr>
<tr>
<td>2</td>
<td>1.0%</td>
<td>1.5%</td>
</tr>
<tr>
<td>3</td>
<td>0.9%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

2x Improvement in whole wafer process uniformity.
Implant Non-Uniformity

- With recent uniformity improvements, LSA process uniformity is achieving measured Rs results ~1% 1-sigma uniformity.
- Implant uniformity of ~tenths of a percent are now noticeable in post-LSA Rs results.

\[\sigma_{RS} = \sqrt{\sigma_{LSA}^2 + \sigma_{implant}^2} \]

- Example shown here
 - Measured \(\sigma_{RS} = 1.3\% \)
 - \(\sigma_{implant} = 0.5\% \) (soak anneal measurement)
 - \(\sigma_{LSA} = 1.2\% \)
- Benchmark:
 - \(\sigma_{RS} = 1\% \)
 - \(\sigma_{implant} = 0.3\% \)
 - Then \(\sigma_{LSA} \) is 0.95%
High Throughput Process

- Uniformity:
 - 1.48% Center,
 - 1.53% 3mm MEE.

- With improvements in profile stability, processing is possible at maximum step size condition.
 - Stable beam reduces need for the averaging effect from 50% step size.
 - Results shown here exceed current uniformity specification, but with 43% increase in wafer throughput!
Summary

• Semiconductor roadmap demands ongoing improvements to reduce process variability.
 • Front-end thermal processes are at the critical path.
• LSA plays a critical role in today’s and tomorrow’s FinFETs through multiple applications
• Recent developments have generated 2x improvement in LSA process uniformity performance.
 • Process uniformity approaching 1% level.
 • Implant uniformity becomes a consideration when interpreting results.
 • Improvements work with dual-beam as well as single beam configuration.
 • Enables higher throughput operation with no sacrifice in performance.
• Side-benefit is improved stability and recovery of process beam after tool-down events.
 • Improved uptime
• Hardware components are upgradeable on existing LSA101/201 systems.