

Leading Edge Silicon Devices

JULY 2015

Dick James, Senior Fellow/Technology Analyst Chipworks

Outline

- Intel finFETs
 - 22 nm Xeon 1230 & Baytrail
 - 14 nm Broadwell
- TSMC 20 nm planar (Qualcomm MDM9235)
- Samsung 20 nm planar (Exynos 5430) & 14 nm finFET (Exynos 7420)
- IBM 22 nm planar SOI (Power8)

Intel's Finfet Evolution – from 22-nm to 14-nm Process (+ Variants)

All content © 2015, Chipworks Inc. All rights reserved.

Intel 22-nm Xeon 1230

FinFETs – Fin Details

- NMOS/PMOS fins similar
- Top radius ~ 2.5 nm
- Functional fin width
 5 15 nm
 top/bottom
- Gate width ~70 nm
- <110> channel direction

FinFETs – PMOS Gates

- Minimum gate length observed ~ 25 nm
- Epi SiGe in PMOS sourcedrains, isotropic cavity etch
- Ti silicide, not Ni
- Gates back-etched and filled with dielectric, allows self-aligned contacts

FinFETs – PMOS Gate

- Similar gate stack to 32-nm, 45-nm generations
- TiN work-function metal, ~1 nm Hfbased hi-k, ~1 nm SiO
- Gate fill changed from Ti-Al to tungsten/TiN

FinFETs – PMOS Source/Drains

Plan-view STEM image

- ~50% SiGe, defects in epi growth on some fins
- E-SiGe appears to penetrate slightly under gate
- Epi lateral growth limited by sidewall spacer (SWS)

9 All content © 2015, Chipworks Inc. All rights reserved.

PMOS Source/Drains EDS Maps

 Clearly shows Ti silicide in epi

FinFETs – NMOS Gates

- Min gate length observed ~ 25 nm
- Ti silicide, not Ni

FinFETs – NMOS Gate

- Similar gate stack to 32-nm, 45-nm generations
- TiAlN work-function metal, ~1 nm Hfbased hi-k, ~1 nm SiO
- Gate fill changed from Ti-Al to tungsten/TiN

Bottom of NMOS gate

FinFETs – NMOS Source/Drains

- 'Mushroom' profile epi, no facets
- SWS nitride left on fin sides
- Epi lateral growth limited by SWS

NMOS Source/Drains EDS Maps

- Clearly shows Ti silicide in epi
- P diffusion can be seen

Intel 22 nm Atom "Baytrail" SoC

Intel 22 nm SoC HV Transistors

- Similar gate stack to logic transistors, longer gate, thicker T_{ox}

Intel 22 nm SoC Source/Drains

Modified epi compared with Xeon device – shorter cycles?

Intel 22-nm Summary

- First example of a tri-gate/finFET part in high-volume commercial production
- Gate work-function materials are similar to those used for the previous 45- and 32-nm generations
- Embedded SiGe is still used as a PMOS stressor
- Gate fill has changed from TiAl to tungsten
- Al-doped copper is used for electromigration improvement
- Effective k-value of the dielectric has been reduced to help minimize intermetal parasitic capacitances
- Integrated MIM capacitors in CPU, SoC parts
- Passives introduced in SoC process
- Embedded DRAM available

Intel 14 nm Broadwell

Intel 14-nm Broadwell

Etched back to STI

Etched back to substrate

- Contacted gate pitch ~70 nm
- Nominal fin pitch ~42 nm

21 All content © 2015, Chipworks Inc. All rights reserved.

Intel 14-nm Broadwell

- Vertical fins! But still rounded fin tops.
- PMOS gates formed first
- W fill in NMOS
- Multiple steps to achieve fin profiles after fin etch

- Asymmetric stress deforms fins
 - Leftmost fin leans left
 - Rightmost fin leans right

22 All content © 2015, Chipworks Inc. All rights reserved.

Intel 14-nm – PMOS Gates

- Minimum gate length observed ~22 nm
- TiN work-function metal
- Epi SiGe in PMOS source-drains, isotropic cavity etch
- Gates back-etched and filled with dielectric, allows selfaligned contacts

Intel 14-nm – NMOS Gates

- TiAIN work-function metal
- SWS etched before S/D epi growth
- Ti silicide, not Ni

24 All content © 2015, Chipworks Inc. All rights reserved.

Intel 14-nm – Source/Drains

- PMOS epi-SiGe takes
 <111> planes as in 22-nm
- NMOS epi takes <111> planes at base
 - Cavity etch used
- SWS etched before S/D epi growth in PMOS and NMOS
- And.. here be airgaps!

Intel 14-nm – Fin Distortion

 Visible micro-loading and double patterning effects

Before STI densification fins are vertical

STI densification severely deforms the fins. Later, at STI etch, they partially recover.

chipworks

Qualcomm MDM9235 (20 nm HPM HKMG Process)

20HPM PMOS Transistors

- Second-generation HKMG process – hi-k formed after polySi removal (like Intel 32-nm)
- PMOS gate stack formed before NMOS
- Minimum observed gate length 28 nm
- Work-function materials similar to 28-nm process – PMOS is TiN
- Raised source/drain epi with e-SiGe, graded -> ~40% Ge

20HPM NMOS Transistors

- Minimum observed gate length 31 nm
- Raised source/drains, stacking faults for stress (like Intel 32-nm)
- TiAIN work-function material, similar to 28-nm process
- <110> channel
- AICoCu gate fill with AIO cap

Samsung Exynos 5430 (20 nm Gate-Last HKMG Process)

Samsung 20 nm PMOS Transistors

- This is Samsung's 1st generation gate-last, replacement gate HKMG process
 - High-k formed after polySi removal
- 193 nm immersion lithography was used for critical layers
- 10 metals including one level of Al, nine levels of Cu. Mndoped Cu metallization was used in the lower Cu levels.
- PMOS e-SiGe graded to ~50%.
- Work-function materials similar to Intel/TSMC process – PMOS is TiN

Samsung 20 nm NMOS Transistors

- Contacted logic gate pitch 90 nm
- Minimum metal pitch 80 nm
- Minimum observed gate length ~30 nm
- Work-function materials similar to Intel/TSMC process – NMOS is TiAIN

Hf. Si. O

Samsung Exynos 7420 (14 nm FinFET Process)

Samsung 14 nm FinFETs

- 1st generation finFET transistors, 2nd generation RMG process
- 48 nm fin pitch, gate pitch ~78 nm
- No self-aligned contacts, Ti silicide

Samsung 14 nm FinFETs

- TiN PMOS WF material, TiAIC NMOS WF material
- Functional fin height ~38 nm, fin width ~8 nm at half height
- Minimum gate length ~27 nm, gate width ~80 nm

Samsung 14 nm FinFET Source/Drains

- PMOS epi not consistently merged, location dependent
- NMOS epi is consistently merged, location independent
- PMOS Ge graded -> ~40%

Samsung 14 nm FinFET Source/Drains

37 All content © 2015, Chipworks Inc. All rights reserved.

IBM POWER 8 Server Processor (22 nm SOI Gate-First HKMG Process)

IBM 22HP Transistors

- PMOS e-SiGe source/drain (S/D), Ge graded -> 30% Ge
- PMOS e-SiGe channel -> 25% Ge
- NMOS e-Si S/D tubs (claimed eSi:C^[7, 8]), also doped with 2% Ge (likely for stress relaxation or to control phosphorus out-diffusion)
- Aluminum on hafnium oxide gate dielectric to adjust WF in PMOS gate dielectric layer
- TiN layer under silicided polysilicon gate
- NiPt-silicided S/D and gate
- Raised S/D in both NMOS and PMOS
- Dual stress liner

[8] "Performance-optimized gate-first 22-nm SOI technology with embedded DRAM.", Freeman, G., et al. *IBM Journal of Research and Development* 59.1 (2015): 5-1.

39 All content © 2015, Chipworks Inc. All rights reserved.

^{[7] &}quot;22nm High-performance SOI technology featuring dual-embedded stressors, Epi-Plate High-K deep-trench embedded DRAM and self-aligned Via 15LM BEOL", Narasimha, S., et al., IEDM 2012.

Where do we go from here?

Source: imec

Node	Gate pitch	L	Spa- cer	Fin width	Fin height	Fin pitch	Contact size	ЕОТ
10	63	20	11	8	32	34	21	0.85
7	44	15	7	6 Source: Sy	30 nopsys	24	15	0.8

Where do we go from here?

Strained SiGe: Combination Champion (7 nm)

- Only Si and SiGe with low Ge % can match LP spec
- HP performance penalty to pure Ge is ~20%
- The choice between pure Si vs SiGe with low Ge % can be made based on PMOS/NMOS stress trade-off

SYNOPSYS'

My guess:

- Si FinFETs at 10 nm (possibly SiGe for HP)
- Si -> SiGe at 7 nm
- RMG at 10 nm, but 7?
- The clock will slow down 10 in 2017, 7 in 2020?

4] All content © 2015, Chipworks Inc. All rights reserved.

Summary

- A look at Intel's finFET evolution
- TSMC's 20-nm transistors
- Samsung 20-nm planar and 14-nm finFET transistors
- IBM 22-nm transistors
- The future?

Acknowledgements

I would like to thank Chipworks' laboratory staff and process analysts for all the hard work of analyzing these complex devices. They did a great job!

