The long and winding road to FinFETs: a bit of past, present and future

Witek Maszara GLOBALFOUNDRIES

NCCAVS Junction Technology Group Oct 14, 2014

Introduction
FinFET technology challenges and trends
FinFET circuit layout challenges

Why do we need FinFETs today?

Multigate architectures

Brief history of FinFETs

Brief history of FinFET circuits

Technology design challenges

- Fin Patterning
- Fin Shape
- Fin Dimensional Variability
- Fin Doping
- Stress for Fins
- Fin Orientation
- Fin Isolation
- FinFET Parasitic Capacitance
- FinFET Reliability
- Alternative Fin Materials
- Passive Elements in FinFET Technology
- FinFET Performance

Fin patterning – needs and challeges

Design requirements:

- Dense, sub-optical fin pitch
- High aspect ratio (height to width >2)
- Litho challenges:
 - Fin pitch is below optical (193i) litho resolution
 - If litho-etch-litho-etch approach considered - inherent overlay error between two fin patterns impacts down-stream processing;
 - Fin width much smaller than narrowest litho line (Lgate)
 - Line edge roughness (LER) of the process leads to substantial local fin width variability (LWR).

Fin patterning – solutions: SADP

- Solution to overlay problem: spacer-defined self-aligned double patterning (SADP)
 - Fin pitch down to ~40nm with 193i scanner.
 - Narrower fin pitches would require SADP or litho method to be applied twice.
 - Lower LER → lower LWR, or fin width variation.
 - EUV lithography may not be able to improve on the LER over optical (193i)

Fin patterning – solutions: "Sea-of-fins"

- Lithographic restrictions require regular patterns at 20nm node and below
 - Unidirectional fins generally on one pitch
 - Typical approach "sea-of-fins"
 - Unwanted fins and pieces of fins are subsequently removed by "fin-cut" masking steps.
 - Removal of single fins challenging pairs of such sacrificial fins may need to be designated for removal.

Fin shape

- FinFETs with sloping sidewalls have benefits:
 - Are more sturdy mechanically thus less vulnerable to damage during processing;
 - Assure better fill of trenches between fins with fin isolation dielectric;
 - Assure easier gate etch and spacer removal off fin sidewalls
- FinFETs with sloping sidewalls have a significant drawback:
 - Poor short channel control at the fin bottom
 - Need to go to more rectangular shape

Fin dimension variability.

- Fin <u>height and pitch</u> variation major impact on drive current and AC performance at scaled dimensions
- Unlike in planar devices all finbased devices suffer from the same percentage of device width error.

C-Y. Kang et al., VLSI 2013

Device doping

- FinFET generally requires much smaller channel doping than planar devices.
- Source/drain doping challenging due to implant damage, dopant distribution
- Alternatives:
 - High temperature (300-400C) implants,
 - Plasma-based doping
 - Monolayer doping methods
 - In-situ doped epitaxy

Source-Drain engineering: silicide

- Selective epitaxy in source/drain area shapes contact area for subsequent silicidation.
 - Epitaxial growth just merging neighboring fin delivers more area for placement of silicide contact than fully merged fins with flat top surface.

Source-Drain engineering: stress

- Selective epi of SiGe replacing Si fin in s/d area adds stress to PMOS FinFET channel.
- Stress benefit saturates for fin recess ~20nm below STI surface
 - 3D modeling

Stress by SRB

FIN

m

S N N

Si substrate

Fins can be stressed in a similar fashion to that of planar devices

 Stress by buried relaxed epi buffer layer (SRB) has been found by modeling more effective than source/drain stressors in scaled FinFETs

Fin orientation

- Hole mobility is sizably higher on (110) surface than on (100) but the difference decreases with increasing strain
- Electrons flow somewhat slower along (110) plane than on (100) in planar devices.
- In FinFETs, quantum confinement results in quite different behavior electron mobility becomes comparable or better for (110) sidewall conduction than for (100)

Fin isolation – source-to-drain

Source-to-drain leakage.

 Junction-based isolation will likely be very challenging for FinFET devices with gate length Lgate~<15nm.

Alternative solutions:

- Dielectric layer below channel
- Semiconductor buffer layer below channel with appropriate band structure

Simulation results

loff=0.3nA/um

Fin isolation – device-to-device

Device-to-device leakage.

- S/D junction-to-substrate area is much smaller in FinFETs → leakage to substrate is lower
- Required STI trench depth shallower by ~3x

PLANAR STI – INTEL 32nm

FINFET STI – INTEL 22nm

FinFET parasitic capacitance vs planar.

- FinFET has inherently higher parasitic capacitance than planar device.
 - Primarily of gate-to-fin capacitance between part of the gate above the fin and the top of the fin
- Can be optimized down to about 5% above planar device's.
- This capacitance decreases with decreasing fin pitch and increasing fin height, per effective device width

Source: M. Guillorn et al., VLSI 2008

Reliability

- NMOS TDDB and PBTI observed better in transition from planar 32nm to FinFET-based 22nm technology node (Intel).
- PMOS TDDB and NBTI appears unchanged for FinFETs
- Lower transverse field in FinFET is credited for improved reliability.

Source: S. Ramey, et al., IRPS (2013)

Alternative fin materials

- Increasing power density in scaled technologies will require novel channel solutions for higher mobility.
 - Today: Strained Si channel
 - Tomorrow: Alternative channel material with higher mobility
- Leading contenders:
 - NMOS: III-V material is favored for NMOS, particularly InGaAs (SiGe or Ge possible)
 - PMOS: Ge or SiGe with high Ge content
- Key challenge Integration of CMOS on Si substrate.

Alternative fin materials – All III-V?

Can we use one high-mobility material for both NMOS and PMOS?

- Antimonides, specifically InGaSb, show very good electron mobility and decent hole mobility.
- Adequate band edge off-sets for electrons and holes to latticematched buffer material: AlGaSb, for quantum well formation. There would be:
 - >One lattice-matching structure
 - One quantum confinement structure
 - Same gate dielectric and perhaps the same s/d contact material

Alternative fin materials – Integration schemes

DC Performance - NFET Benchmark

- Best III-V channel planar NMOSFETs exceed Si FinFET in performance (Gmsat vs. Ssat at 0.5eV)
- III-V FinFETs catching up

DC performance - PFET Benchmark

Best Ge channel FinFET NMOSFETs exceed Si FinFET in performance (Gmsat vs. Ssat at 0.5eV)

AC performance – planar vs. fin

- Comparison of AC performance using compact modeling
 - Figure-of-merit involving various logic gate configurations
 - As much as 40% gain can be realized in transition from planar to FinFET technology even with Vdd lowered from 0.9 to 0.8V
 - Same baseline design rules (pitches)

Passive elements in FinFET technology

Challenges with incorporating diodes and passive elements in FinFET technology are rather minor.

- Reference diodes and ESD can be realized either in:
 - Long, gated fin diodes and long channel FinFETs
 - Or in the Si bulk substrate.
- Resistors can be done in:
 - Thin films (gate, MOL or BEOL metals),
 - Or in fins.
- Decoupling capacitors can be realized in:
 - Fins
 - Or MIM capacitors.

Nanowires

- At very short gates FinFET body may have to be converted to that of nanowire (aka Gate-All-Around) to control short channel leakage, and DIBL.
- Wires cannot be large in diameter due to device pitch limits.
 - To compete with FinFETs on per-foot-print current drivability, several (2-3) wires need to stacked.
- Vertical wires may offer yet another density scaling option

Vertical Nanowires

Etched Si Nanowires

Source: Steegen, IMEC ITF 2014

Layout Design Methodology

- One size of fins on chip (width, height)
- Wide devices are realized with large number of fins simple.
- Narrow devices and particularly SRAM transistors:
 - STI width between SRAM n and p devices may require customized fin pitches, different than those used in the logic cells in order to further minimize SRAM cell size.
- <u>Taller fins</u> can deliver more effective device width per foot print (with height limits defined by process manufacturability) – potential area saving or performance boost.
- Fin pitch selection related to:
 - Process challenges
 - Optimization of "gear-ratio" between fin pitch and metal 2 pitch in standard logic cell design.

SRAM

- SRAM design tradeoff between stabile operation and cell size.
- Densest SRAM cell design would use 1-1-1 approach:
 - One-fin pull-up transistor (PU), one-fin pass-gate transistor (PG) and one-fin pulldown (PD).
 - This configuration would provide the smallest SRAM cell size with lowest stand-by leakage.
 - However, cell would likely require write assist and read assist circuitry.
- Larger cells, such as 1-2-2 or 1-2-3 (PU-PG-PD)
 - Would require less operation assistance, perhaps only for reading the cell.

FinFET design ecosystem

- Most of electronic design automation (EDA) tools need to be adapted for FinFET designs.
- This process has been largely completed and tools are available from key vendors (Synopsis, Mentor Graphic and Cadence).
- Leading semiconductor foundries are capable of providing full EDA support for their customers.

Tool/Function	Tool status
Spice Simulation	
RC Extraction	
DRC	
LVS/LPE	
RTL Synthesis	
Floorplan/Placement	
Routing	
Static Timing Analysis	
DFT, IR drop, Signal Integrity	

Summary

High performance logic has adapted FinFET technoloy and will continue to use it for several generations into the future.

- SoC products will follow shortly after.
- New materials for fins will likely be introduced into products in this decade.

 Substantial changes are brought up into circuit-design world by FinFET.

Design ecosystem for FinFETs is available.

ACKNOWLEDGEMENTS

Authors are thankful to M. Rashed, J. Cho, A. Jacob, G. Srinivasan, H. Levinson, J. Kye, S. Davar, F. Geelhaar, K. Akarvardar and Z. Krivokapic for helpful discussions.