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Why do we need FINFETs today?

Contact
Resistance loff
Increase Increase
(Active (Stand-by
power power
has to increase)
increase)

al
o

~Gate pitch

<>

N
o
o

Iy
a1
o

=
o
o

Physical dimensions [nm]
a1
o

= =
S‘): @)
= =
5 5
@) G @)

SUBSTRATE



FINFET benefit

I:)standby

source
substrate




>
=
X
<@
o
=
O
O
(-
O
15
S
(@)]
]
—
=

Multigate architectures

Vertical Double-gate

g@q
S

L |

Vertical GAA

LV

| Planar Double-gate | ‘
@

==

[ Multi-bridge |

T

7l

Planar Gate-All-Around

Scalability and Performance




1987

First multi-
gate —
K.Hieda

Gate Sour

ce
0 A< s
" - -~
‘ "

Brief history of FINFETS

1988

First Gate-all-
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H.Takato

1989

DELTA,
predecessor
of FinFET
(bulk)
D.Hisamoto
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Brief history of FINFET circuits
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SRAM cell - Ring 20Mb SRAM
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(61stage) —
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2012

First CPU —
“Ivy Bridge”,
Intel Corp.
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Fin patterning — needs and challeges

= Design requirements:
— Dense, sub-optical fin pitch

— High aspect ratio (height to width
>2)

= Litho challenges:

— Fin pitch is below optical (193i)
litho resolution

«If litho-etch-litho-etch approach
considered - inherent overlay error
between two fin patterns impacts
down-stream processing;

— _Fin width much smaller than
narrowest litho line (Lgate)

— Line edge roughness (LER) of the
process leads to substantial local
fin width variability (LWR).




Fin patterning — solutions: SADP

= Solution to overlay problem:
spacer-defined self-aligned
double patterning (SADP)

Fin pitch down to ~40nm with 193i
scanner.

Narrower fin pitches would require
SADP or litho method to be applied
twice.

Lower LER = lower LWR, or fin
width variation.

EUV.lithography may not be able to

Improve on the LER over optical
(1931)
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Fin patterning — solutions: “Sea-of-fins”

= Lithographic restrictions require regular patterns at 20nm node and
below

Unidirectional fins generally on one pitch
Typical approach - “sea-of-fins”

Unwanted fins and pieces of fins are subsequently removed by “fin-cut™
masking steps.

Removal of single fins challenging - pairs of such sacrificial fins may need to
be designated for removal. |

)




Fin shape

FINFETs with sloping sidewalls have benefits:
— Are more sturdy mechanically thus less vulnerable to damage during processing;
— Assure better fill of trenches between fins with fin isolation dielectric;
— Assure easier gate etch and spacer removal off fin sidewalls

FINFETs with sloping sidewalls have a significant drawback:

— Poor short channel control at the fin bottom
— Need to go to more rectangular shape

Old fl n Fintop width fixed at 5nm i Fin top width fixed at 5nm
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FIn dimension variability.

2
AR

N s _G“-“-“_-

[2] uo

_ o !

C o
nmb =
pra}
S S 0 c £.9
© © eﬂ%
28 38%
S5 3J&
= ] O O
Dnm )N @))
c|+ O C o c
a%;ﬂsnla.me.
ae O o O 5 =
o E o ST 8 =
o SI2 Ok Sek

| -

SI558 =8 Es
.man.m naam
L EcoT Do n =

o o

geeA o

C-Y. Kang et al., VLSI 2013




Device doping

FINFET generally requires
much smaller channel
doping than planar devices.

Source/drain doping
challenging due to implant
damage, dopant distribution

Alternatives:

= High temperature (300-400C)
Implants,

=»Plasma-based doping
— Monolayer doping methods
— In-situ doped epitaxy
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Source-Drain engineering: silicide

Selective epitaxy in source/drain area shapes contact area for
subsequent silicidation.

— Epitaxial growth just merging neighboring fin delivers more area for
placement of silicide contact than fully merged fins with flat top surface.

L,=33nm
IFlat-top epi
ElDiamond-shape epi

Source: H. Kawasaki et al., IEDM 2009




Source-Drain engineering: stress

Selective epi of SiGe replacing Si fin in s/d area adds stress to PMOS FINFET
channel.

Stress benefit saturates for fin recess ~20nm below STI surface
— 3D modeling

Si Fin Channel Stress with eSiGe20%
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modeling more effective than source/drain stressors in scaled

= Fins can be stressed in a similar fashion to that of planar devices
FINFETs

= Stress by buried relaxed epi buffer layer (SRB) has been found by



FIn orientation

Hole mobility is sizably higher on (110) surface than on (100) but the difference
decreases with increasing strain

Electrons flow somewhat slower along (110) plane than on (100) in planar devices.

In FINFETS, quantum confinement results in quite different behavior — electron
mobility becomes comparable or better for (110) sidewall conduction than for (100)
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Fin Isolation — source-to-drain

Simulation results

Source-to-drain leakage.

=4 nm
~&-6nm
~—=8nm
~-10nm

— Junction-based isolation will
likely be very challenging for
FINFET devices with gate length
Lgate~<15nm.
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Alternative solutions:

— Dielectric layer.below channel

— Semiconductor buffer Iayer . . 0015 002  0.025
below channel with appropriate
band structure

Channel Length, [Lm]
loff=0.3nA/um

0.03




Fin Isolation — device-to-device

= Device-to-device leakage.

— S/D junction-to-substrate area is much smaller in FINFETs - leakage to substrate is
lower

— Required STI trench depth shallower by ~3x

PLANAR STI—=INTEL 32nm FINFET STI = INTEL 22nm

Source: ChipWorks




FINFET parasitic capacitance vs planar.

FINFET has inherently higher
parasitic capacitance than
planar device.

— Primarily of gate-to-fin capacitance

between part of the gate above the
fin and the top of the fin

Can be optimized down to
about 5% above planar
device's.

This capacitance decreases
with decreasing fin pitch and
Increasing fin height, per
effective device width
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Reliability

NMOS TDDB and PBTI observed better in transition from planar 32nm
to FINFET-based 22nm technology node (Intel).

PMOS TDDB and NBTI appears unchanged for FInFETS
Lower transverse field in FINFET is credited for improved reliability.
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Source: S. Ramey, et al., IRPS (2013)



Alternative fin mateg

NMOS PMOS
SiGe

= |Increasing power density in scaled
technologies will require novel
channel solutions for higher mobility.

— Today: Strained Si channel

— Tomorrow: Alternative channel material
with higher mobility

* Leading contenders:

— NMOS: IlI-V material is favored for
NMOS, particularly InGaAs (SiGe or Ge
possible)

—. PMOS: Ge or SiGe with high Ge content

= Key challenge — Integration of
CMOS on Si substrate.



Alternative fin materials — All 111-\VV?

Can we use one high-mobility
material for both NMOS and
PMOS?

Antimonides, specifically InGaShb,
show very good electron mobility
and decent hole mobility.

Adequate band edge off-sets for
electrons and holes to lattice-
matched buffer material: AlGaShb,
for quantum well formation.

There would be:

: : Source: Z.Yuan et al.,
One lattice-matching structure | VLsi2012

One quantum confinement
structure

Same gate dielectric and
perhaps the same s/d contact
material
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Alternative fin materials — Integration schemes

We=35nm

InAlAs bottom barrier
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DC Performance - NFET Benchmark

Best IlI-V channel planar NMOSFETs exceed Si FINFET in performance (Gmsat vs.

Ssat at 0.5eV)

I1I-V FINFETSs catching up
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DC performance - PFET Benchmark

Best Ge channel FINnFET NMOSFETSs exceed Si FINFET In
performance (Gmsat vs. Ssat at 0.5eV)

(Strained) Ge Pfet
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AC performance — planar vs. fin

Comparison of AC performance using compact modeling

— Figure-of-merit involving various logic gate configurations

— As much as 40% gain can be realized In transition from planar to
FINFET technology even with Vdd lowered from 0.9 to 0.8V

— Same baseline design rules (pitches)
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Passive elements in FINFET technology

Challenges with incorporating diodes and passive
elements In FINFET technology are rather minor.

Reference diodes and ESD can be realized either In:

— Long, gated fin diodes and long channel FINFETS
— Or in the Si bulk substrate.

Resistors can be done In:

— Thin films'(gate, MOL.or BEOL metals),

— Orin fins.

Decoupling capacitors can be realized In:
— FIns

— Or MIM capacitors.



Nanowires

At very short gates FINFET body may have to be converted to that

of nanowire (aka Gate-All-Around) to control short channel
leakage, and DIBL.

Wires cannot be large in diameter due to device pitch limits.

— To compete with FInFETs on per-foot-print current drivability, several
(2-3) wires need to stacked.

Vertical wires may offer yet another density scaling option
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Layout Design Methodology

One size of fins on chip (width, height)

Wide devices are realized with large number of fins — simple.
Narrow devices and particularly SRAM transistors:

— STI width between SRAM n and p devices may require customized fin
pitches, different than those used in the logic cells in order to further
minimize SRAM cell size.

Taller fins can deliver more effective device width per foot print (with
height limits defined by process manufacturability) — potential area
saving or performance boost.

Ein pitch selection related to:

— Process challenges

— Optimization of “gear-ratio” between fin pitch and metal 2 pitch in standard
logic cell design.



SRAM

= SRAM design — tradeoff between stabile operation and cell size.
= Densest SRAM cell design would use 1-1-1 approach:

— One-fin pull-up transistor (PU), one-fin pass-gate transistor (PG) and one-fin pull-
down (PD).

— This configuration would provide the smallest SRAM cell size with lowest stand-by
leakage.

— However, cell would likely require write assist and read assist circuitry.
= Larger cells, such as 1-2-2 or 1-2-3 (PU-PG-PD)

— ‘Would require less operation assistance, perhaps only for reading the cell.




FINFET design ecosystem

= Most of electronic design automation (EDA) tools need to be adapted for FInNFET
designs.

= This process has been largely completed and tools are available from key
vendors (Synopsis, Mentor Graphic and Cadence).

= Leading semiconductor foundries are capable of providing full EDA support for
their customers.

SpiceSimulation | & |
oRe | ¢ o S
VAl |

LVS/LPE

Rilsynthess | &
Floorplan/Placement | ¢/ |
Routing "
StaticTimingAnalysis | & |
|DFT, IRdrop, Signal Integrity | @/ |




Summary

High performance logic has adapted FINFET technoloy and
will continue to use it for several generations into the future.

— SoC products will follow shortly after.

New materials for fins will likely be introduced Into products
In this decade.

Substantial changes are brought up into circuit-design world
by FINFET.

Design ecosystem for FINFETS Is avallable.
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