Doping FinFETs: Trade-offs for Beamline Implantation, Plasma Doping, and Diffusion from Doped Epi/CVD Films

> Susan Felch October 14, 2014

Outline

- Introduction to FinFET doping
- Advantages and concerns with implant-based FinFET doping
- Advantages and concerns with deposition-based FinFET doping
- Summary

Three-Dimensional (3D) Transistors

- FinFETs or tri-gate transistors
 - In production for Intel's 22 and 14 nm technologies
 - Scheduled for foundry production at Global Foundries, TSMC, Samsung, etc.

Intel 22 nm FinFET: Images by Chipworks

Potential Implants for Bulk FinFET Doping and Materials Modification

Courtesy of Michael Current, 2013

ITRS 2011 Roadmap for Junction Depths

- Uniform current at top, middle, and bottom of fin
 - Uniform source/drain extension doping
- Lateral junction depth (gate/SDE overlap) is key for FinFETs
 - Short channel effect control
 - Approximately equal to ITRS X_i values
- 10 nm node requires Multi-Gate with <5 nm X_i

Sematech and DNS, IWJT 2012, Paper I1-03

Doping Requirements for N10 FinFETs

- Ultra-shallow, abrupt, and damage-free junctions with high active dopant concentrations
 - ⋆ X_j < 5 nm
 - Minimal amorphization thickness
- High retained dose over entire Fin surface (after cleans, caps, and anneals)
 - Minimal oxidation on FinFET sidewalls from PR ash
- Good process uniformity and repeatability (wafer-to-wafer, day-to-day)
- No fin erosion (corners or fin height)
- Compatibility with standard photoresist patterning processes

General FinFET Doping Issues

- Hard mask needed for all techniques other than implant and Plasma Doping
- Fin cannot be completely amorphized
- Difficult to strip photoresist with Plasma Doping (high dopant surface concentration)
- Surface oxidation after doping results in dopant loss during cleans
- Surface diffusion-based techniques are sensitive to surface condition and cleanliness
- Dopant profile in Si determined by anneal
 - Need some diffusion to get dopant from surface into Si and under gate, so need more than millisecond anneal ("diffusionless")
 - Anneal temperature limitations may limit electrical activation

FinFET Doping Candidates

- Implant-based
 - Tilted beamline implant
 - Plasma Doping
- Deposition-based
 - In-situ doped epi + diffusion
 - Monolayer Deposition (MLD) + diffusion
 - Deposited thin film (PECVD/ALD) + diffusion
 - PECVD + beamline implant knock-on + anneal (SEN MTI technique)

Advantages and Concerns with Implant-Based FinFET Doping

Off-Equilibrium Annealing after PAI Can Improve Solid Solubility and Sheet Resistance

Dopant De-Activation During Subsequent Thermal Process Steps

[B.J. Pawlak *et al.*, Appl. Phys. Lett. **84**, 2004] [N.E.B. Cowern *et al.* Appl. Phys. Lett. **86**, 2005]

- SPER junctions are deactivated by interstitials emitted from EOR-defects during post-anneal
- C/F trap the interstitials and prevent de-activation
- This does not happen only for SPER junctions, but any junctions with EOR defects (Laser and Flash Anneal)
- Concern with any >700C thermal processes after junction formation

Challenges due to Fin Amorphization

- Complete fin amorphization leaves only small area of crystalline seeds at channel and fin bottom to enable re-crystallization
 - Leads to growth of twin boundaries and large areas in poly-crystalline form
 - Reduced dopant activation and poor carrier mobilities due to residual defects and poly-crystalline Si
- Must minimize fin amorphization

Shadowing and Dose Retention Issues with Beamline Implant

- Tilt angle is limited due to shadowing from tight fin spacing, high aspect ratios, and presence of PR and other films for litho
- Sidewall doping with 10° beam is ~10 times less than that with 45° beam
 - Due to ion reflection, limited ion penetration into sidewall, and sputtering

Plasma Doping: High-Dose Doping & Materials Modification

- Negative voltage repels electrons and creates plasma sheath of positive ions
- Electric field accelerates positive ions and implants them into wafer
- Voltage determines implant depth
 - "Accelerator size" is sheath thickness
 - 100 V 10 kV
- Simultaneous implantation of whole wafer
- Many doping and materials modification applications
 - Very high doses (> 10¹⁶ cm⁻²)
 - 2 applications used in production of almost all DRAM devices today

FinFET Plasma Doping

- 3D Plasma Doping is a combination of:
 - Direct implant
 - Re-sputtering from bottom between fins
 - Deposition
- Multiple process knobs for optimization of doping conformality
 - Implant influenced by electric field and gas molecule collisions
- High throughput at low ion energies
 - Minimize fin erosion and amorphization
 - Ultra-shallow junction depths

UJT Plasma Doping Process & Results

- He PAI + USJ dopant (B₂H₆ or AsH₃) implant = SRPD (Self-Regulatory Plasma Doping)
 - 1) He PAI
 - 2) B₂H₆ is "absorbed by the sponge" formed in Step 1
- Excellent conformality demonstrated (SSRM)
 - Similar doping depth on top and sides of fin
 - No fin erosion (corners or fin height)
- 10% I_{on} improvement at IMEC

UJT AsH₃/He Plasma Doping

- Sidewall doping by adsorption of As radicals and subsequent thermal drive-in
- SIMS through Fin data after anneal show sidewall/top As dose ratio ~ 0.7
- IMEC, IWJT 2012, Paper I3-02

Plasma Doping vs. Beamline Implant for FinFET Devices

- TEM comparison of fin crystalline quality with UJT SRPD and beamline implant
- IMEC, IWJT 2012, Paper I3-02

Process Integration Issues with Plasma Doping

- Difficult to strip photoresist with Plasma Doping (high dopant surface concentration)
- Surface dopant loss due to oxidation during PR strip and subsequent HF cleans
- Additional enhanced oxidation after Plasma Doping implants
 - Enhanced by presence of high dopant concentration and/or high density of broken Si bonds
- Perfectly conformal implant?
 - Difficult to find process space
 - Plasma is too directional; need more scattering
- Poor quality of regrown fin Si after Plasma Doping
 - Especially after AsH₃ Plasma Doping
 - Must minimize fin amorphization

Plasma Doping vs. Beamline Implant

- Advantages of beamline implant
 - Dose control, uniformity, and repeatability
 - Particles
 - Tool maturity
- Advantages of Plasma Doping
 - More process knobs to optimize conformality by balancing direct implant, deposition, and re-sputtering
 - Higher throughput for lower energies required to minimize amorphization
- Same process integration issues (e.g. surface dopant loss)
- Both are compatible with photoresist
 - Hard mask required for patterning with other deposition-based techniques
 - Additional processing steps
 - More expensive

Advantages and Concerns with Deposition-Based FinFET Doping

Effect of Thermal Budget Limits on Dopant Diffusion and Activation

- Need some diffusion to get dopant from surface into Si and under gate, so need more than millisecond anneal ("diffusionless")
 - For 2 nm diffusion, need 10 msec at 1200C
- Anneal temperature limitations may limit electrical activation

Figure 4.1 Thermal budget limitations for advanced processing. Intrinsic diffusion lengths for Boron are shown as a function of thermal cycle [Holton00] as compared to the criterion for 50% electrical activation of a 10^{15} B/cm² implant at 250 eV [Mokhberi02]].

Courtesy of M. Current

In-situ Doped Epi + Diffusion

- Diffuse dopant from epi source/drain into source/drain extension region
 - PMOS: B from SiGe
 - NMOS: P from Si:C

Monolayer Doping (MLD) + Diffusion

Sematech and DNS, IWJT 2012, Paper I1-03

- Monolayer of dopants is assembled on Si surface
 - Uniform sticking of covalently bonded, dopant containing molecules
 - Molecular footprint of precursor tunes areal dopant dose
- Subsequent thermal treatment breaks dopant molecules and results in thermal diffusion of dopant atoms into Si substrate
 - Thermal treatment temperature and time govern junction depth

Comparison of MLD and Beamline Implant

Deposited Thin Film (PECVD/ALD) + Diffusion

"Formation of Source/Drain from Doped Glass," Intel Patent Application WO1997013273

- Deposit thin film containing desired dopant
 - PECVD, ALD, CVD
- Subsequent thermal treatment results in thermal diffusion of dopant atoms into Si substrate
 - Thermal treatment temperature and time govern junction depth

PECVD + Beamline Implant Knock-on + Anneal: Momentum Transfer Implant (MTI)

- 1. 3 nm B or P deposition (PECVD in LEDA with 0V)
- 2. Beamline implant at 10° tilt
 - Ge⁺ for B (~1E15)
 - Xe⁺ for P (mid E14)
 - Knock B or P dopant into Si fin sidewalls
- 3. Anneal to diffuse and activate dopant
- No amorphous layer produced

Advantages and Concerns of Deposition-Based FinFET Doping

Advantages

- Very good conformality
- No amorphization, so residual damage is minimal

• Concerns

- Hard mask needed for patterning, as opposed to photoresist
 - MTI may be able to use photoresist
- Sensitive to surface condition and cleanliness
 - MTI is less sensitive to surface condition
- Dopant profile in Si determined by anneal
 - Need some diffusion to get dopant into Si, so need more than millisecond anneal ("diffusion-less")
 - Anneal temperature limitations may limit electrical activation
 - No amorphous layer to give higher, non-equilibrium dopant activation

Summary: FinFET Doping Trade-offs

- Several candidates for FinFET doping
- All have advantages and concerns
- No clear winner
 - Different technologies may be used by different companies
 - Different technologies may be used for PMOS and NMOS