

Semicon West - Junction Technology Session Advanced Metrology Solutions 7/11/13

www.cameca.com

A strongly Differentiated Company with Innovative Designs and Clear Technical Roadmap

A Company with diverse In-situ Analytical/Measurement Tools placed in Diverse Markets

A Leading Edge Company striving for best Instrumental Performance in Present and Future Applications

Dedicated to serving the highest demands of the World's Top Industry R&D Labs, Manufacturing support, Universities, Government, Nuclear and Military Labs

www.cameca.com

World Leader in Elemental & Isotopic Microanalysis

Multiple Products over 3 Method Types:

LEAP 4000-HR, 4000X-HR, 4000X-Si « APT »

Atom Probe Tomography Pulsed HV Field or Focused Laser In / Ions Out

IMS Wf, IMS 7f-Auto, IMS 1280-HR, Quad-4550, NanoSIMS 50L « SIMS » Secondary Ion Mass Spectrometry Ions In / Ions Out

SXFive, EX-300 « EPMA » « LEXES » Electron Probe MicroAnalysis; Low Energy X-ray Emission Spectroscopy Electrons In / X-rays Out

France, China, Germany, India, Japan, Korea, Russia, Taiwan, USA.

MATERIALS ANALYSIS DIVISION

CAMECA Several CAMECA Product Lines Have Been **Optimized for Semiconductor Applications**

SIMS (Secondary Ion Mass Spectrometry)

- CAMECA SIMS instruments are recognized throughout the international IC community as best in class for investigation on new materials and devices. They are also used as near-the-line tools for automated in-line process control
- Extreme Sensitivity, High Mass Resolution, High Dynamic Range, Low Detection Limits and High Analysis Throughput
- Our SIMS line for Semiconductor applications includes:
 - The IMS Wf: optimized for trace element depth profiling of ultrathin structures at Extremely Low Impact Energy (EXLIE).
 - The **IMS 7f**: depth profiling with high sensitivity (down to ppb atomic concentration) and 2D or 3D imaging of trace elements.
 - The SIMS 4550: Quadrupole SIMS for Ultra Low Energy profiling with unsurpassed ease of use, flexibility and insulator analysis.

SIMS Analytical Outputs

Mass spectrum

Obtained by scanning the mass analyser and recording the mass filtered secondary ion intensities

2D & 3D image

Obtained whether by a direct mass filtered stigmatic microscope image or by scanning a focused ion beam over the sample and recording the intensity of selected secondary ions for each pixel.

Depth profile

Obtained by sputtering the sample and recording a few selected mass filtered secondary ion intensities versus time (=depth).

Isotopic ratio

Obtained by recording the mass filtered secondary ion intensity at the different isotope peak positions

Several CAMECA Product Lines Have Been Optimized for Semiconductor Applications

*LEXES based In-Line Metrology Tools

- The Shallow Probe EX-300 is CAMECA's flagship tool for composition and thickness measurements of ultra-thin structures.
- The non-contact, non-destructive <u>LEXES</u> technique is a unique solution for direct measurement of the chemical composition at the surface and near surface.
- The *EX-300* offers a panel of complementary capabilities enlarging the domains of classical metrology to current challenging processes:
 - **Ultra shallow implants:** Monitoring of low energy, high concentration implants.
 - Strained silicon process control: Chemical composition and thickness in epitaxial layers such as B:SiGe and P:SiC, with no limitation in the layer composition.
 - HKMG metrology: Both the oxides and the metal are controlled by one single
 EX-300 platform.
- The *EX-300* is designed to accelerate the time to market of advanced logic & memory devices while achieving high production yield.

*Low energy Electron induced X-ray Emission Spectrometry

Shallow Probe is based on LEXES: Low energy Electron induced X-ray Emission Spectrometry

LEXES Shallow Probe EX-300 FRONT-END COMPOSITIONAL METROLOGY

- Fully compatible for fab
- 200 / 300 mm wafer
- Comply to SEMI standards

Key Strengths

Non-destructive Non-contact Lateral mapping Patterned wafers (30 by 30µm pads) Buried layers Analysis range: surface to 800 nm depth Cover all elements heavier than Be

Targeted Capabilities

EX-300: Boron measurements in implants BF3 implants for BPLAD

49-points mapping for BF₃ wafer

B average dose	[B] non-uniformity
4.6e15 at/cm ²	4.04 %
F average dose	[F] non-uniformity
1.38e16 at/cm ²	3.88 %
Average ratio F/B	3

EX-300: Metal and Multi-oxide layers monitoring

TiN	60A
ZrO2	40A
AI2O3	
ZrO2	40A
Si	

Nominal thickness and SP measurement for all layers w/ or w/o TiN

5 wafers analyzed and all elements Ti, N, Zr and Al have been monitored to follow-up process variation in buried Al₂O₃ layer

> Layers parameter and variation among wafers Shallow Probe precision better than 1% for all parameters

TiN thickness	TiN Ratio	ZrO2 thickness
57.8 A 1.5% variation	1.29 2% variation	81.9 A 1.2 % variation
among wafers	among wafers	among wafers

Epitaxial -layers

B and Ge in B: SiGe CVD wafers

Global non-uniformity across 300 mm wafers

Each measurement performed in a pad (60 by 60 μ m)

CAMECA Several CAMECA Product Lines Have Been **Optimized for Semiconductor Applications**

LEAP (Local-Electrode Atom Probe) 4000X Si

- The *LEAP 4000X SiTM* is a high performance 3D Atom Probe microscope providing Nano-Scale surface, bulk and interfacial materials analysis of simple and complex structures with atomby-atom identification and **unique spatial positioning data**.
- Atom Probe Tomography (APT) is the only material analysis technique offering extensive capabilities for **BOTH** 3D imaging and chemical composition measurements at the atomic scale (~ 0.1-0.3 nm resolution depth and \sim 0.3-0.5 nm laterally).
- The system works by using the principle of field evaporation, whereby a strong electric field applied to the specimen is sufficient to cause removal of atoms by ionization. Atom removal is triggered either via a voltage or laser pulse applied to the sample.
- APT adoption is now well underway in both Memory and Logic application spaces.

The LEAP 4000X-Si

Description of an Atom Probe

A projection microscope that uses time-of-flight spectroscopy to identify single atoms or small molecular fragments

Key Facts

- Specimen held at ~50K
- Time of flight, t, gives m/n
- Charge state, n, can be 1 to 4
- Flight times ~1 µs (⇔1MHz repetition rate)
- Pulsed field evaporation (δt<1 ns)</p>
 - Field pulsing
 - Thermal pulsing (laser)
- Projection magnification ~10⁶X
 - 0.2 nm ⇒ 0.2 mm at detector
- 100% ionization
- 55% detection efficiency independent of m/n

Revolution in APT: LEAP[™] Design

1. Large Solid Angle (>150 nm field of view)

- **2.** High speed ($>10^8$ atoms/hour)
 - High sensitivity (~1 appm)
 - Large analyzed volume (**10**⁷ nm³)
- **3.** Very good mass resolving power
 - Better than 1000 >
 - Field and laser pulsing
- **4.** Works on microtip arrays
 - 50 µm tall)
 - Specimen prep simplified
 - Specimen lift out facilitated

The Atom Probe provides unique Analysis Capability

LEAP Capable of Analyzing Device Structures

- This (and the following two slides) show published literature examples of both planar and post-planar device structure analysis.
- One significant goal in the application of LEAP to microelectronic structures has been the analysis of devices, especially the entire device structure, not just a small portion of a device.
- The confluence of the downscaling of devices (and the reduction of source/drain junction depths to avoid short channel effects) and the increased field of view now available in modern atom probes now makes the analysis of entire device structures a reality
- Several researchers have used LEAP in the analysis of portions of device patterned structures¹⁻³ and more recently three have succeeded in analyzing entire devices⁴⁻⁶
- Two examples of such device analysis, from a standard transistor and from a fin-style transistor are presented here

^{1.} Moore, J. S., 3-D Analysis of Semiconductor Dopant Distributions in a Patterned Structure using LEAP. Ultramicroscopy 2008, 108, 536–539.

^{2.} Inoue, K., Monolayer Segregation of As Atoms at the Interface between Gate-Oxide and Si Substrate in a p-MOSFET by 3D Atom-Probe Technique. Appl. Phys. Letters 2008, 92, 103506/1-3.

^{3.} Inoue, K., Dopant distribution in gate electrode of n- and p-type metal-oxidesemiconductor field effect transistor by laser-assisted atom probe. Applied Physics Letters 2009, 95, 043502.

^{4.} Inoue, K., Dopant distributions in n-MOSFET structure observed by three dimensional atom probe microscopy. Ultramicroscopy 2009, 109 (12), 1479-1484.

^{5.} Kambham, A. K., Atom-Probe for FinFET dopant Characterization. Ultramicroscopy 2010, in press.

^{6.} Lauhon, L. J., Atom-Probe Tomography of Semiconductor Materials and Device Structures. MRS Bulletin 2009, 34 (10), 738-743.

CAMECA LEAP Analysis of Device Structures – Cont'd

- Inoue et al.¹ have investigated 3D dopant distributions in an n-MOSFET
- Regions of the device analyzed include the gate, gate oxide, channel, source/drain extension, and halo,
 - The atom map to the right shows the data set along with a TEM image of the analyzed region of the transistor (inset)
- Arsenic atoms are visible in the source/drain extension and on top of the gate electrode
 - The As concentration in the source/drain extension was 2x10²¹ cm⁻³ with As atoms being detected to a depth of ~10nm from the implanted Si surface
- B atoms can be seen in the Si substrate (channel and halo extension regions),
 - The boron concentration in the channel region was measured to be 1x10¹⁸ cm⁻³
- P atoms were segregated on the grain boundaries of the poly-Si gate and at the interface between the gate and gate oxide
 - Phosphorus concentration at poly-Si grain boundaries were measured to be 5x10²⁰ cm⁻³
 - Phosphorous concentration at the gate/gate oxide was measured to be 2x10²¹ cm⁻³

1. Inoue, K., Dopant distributions in n-MOSFET structure observed by three dimensional atom probe microscopy. *Ultramicroscopy* **2009**, *109* (12), 1479-1484.

LEAP Analysis of Device Structures – Cont'd

- In fin-transistors (FINFETs), device performance is reduced if an inhomogeneous distribution of dopants exists in the source/ drain extensions
- Recently, Kambham et al.¹ have analyzed the conformality of boron (BF₂) implantation in FINFET structures as a function of implantation angle (10° and 45°)
- An atom map from the FINFET implanted with B at 10° (top, right) qualitatively shows B pileup at the sidewall surface
- The sidewall and top doping profiles were obtained from both sample types and plotted for comparison (bottom, right)¹
 - For the 45° implantation the top (vertical) peak concentration is twice as compared to lateral profile peak concentration
 - In the 10° implantation, the dopants are shallower and significantly reduced in concentration; the result is a high nonconformality of the dopants with the sidewall dose only being 10% of the top dose
- These observations were compared favorably with modeling results from Vandervorst et al.²

1. Kambham, A. K., Atom-Probe for FinFET dopant Characterization. *Ultramicroscopy* **2010**, *in press*. 2. Vandervorst, W., *Journal of Vacuum Science & Technology B* **2008**, *26*, 396.

World Leader in Elemental & Isotopic Microanalysis

www.cameca.com

France, China, Germany, India, Japan, Korea, Russia, Taiwan, USA.

MATERIALS ANALYSIS DIVISION

Thank You!