Flat-Top Flash Annealing™ For Advanced CMOS Processing

Paul Timans, Gary Xing, Silke Hamm, Steve McCoy, Joseph Cibere, Greg Stuart, and David Camm
Outline

• Introduction
 – Key Annealing Requirements for Advanced Devices
 – The Flash-Assisted RTP™ Approach for Millisecond Annealing

• Advanced Doping Requirements
 – The Balancing Act:
 • Diffusion, Activation & Defect Annealing vs. Integration Issues
 o Opportunities through long-pulse millisecond annealing

• Limits on Millisecond Anneal Duration
 – Bulk Wafer Heating
 – Total Energy Requirement

• Process Benefits
 – Improving Kinetic Trade-off by Controlling the T-t profile
 – Dopant Activation Improvements - As & B Doping

• Conclusions
Key Annealing Processes for Advanced CMOS

- **Optimized dopant activation**
 - High Activation: Decrease R_{EXT} - for both ion-implanted & deposited dopants
 - Control diffusion: Optimize gate overlap & placement of junction relative to interfaces/defects
 - Sufficient defect annealing

- **Optimize integration of strain and new materials**
 - Low thermal budget Ni(Pt)Si: Improve R_C, prevent “piping defects”
 - Low thermal budget anneals for high-K film
 - Maintaining channel strain (SiGe & Si:C)
 - Annealing for new channel materials Ge, InGaAs,

Many thermal budget constraints
Reduce T? and/or Shorten Time?
Millissecond Annealing with Flash-Assisted RTP™

- For anneals of < 0.5 s, surface-specific heating is essential:
 - Requires a pulsed energy source (>10 kW/cm²)
 - Flash-lamps or scanned lasers
- Flash-Assisted RTP™ (fRTP™):
 - Fast ramp (150 K/s) to T_i
 - Pulsed surface heating with proprietary water-wall arc lamps
 - Millios® tool provides real-time T measurement and control on front & back of wafer

Diagram:
- **Flash Lamps:** 4 Flash Lamps above wafer, exposing device side to an intense flash
- **Arc Lamps:** 2 Arc Lamps below wafer to heat to intermediate temperature

Graph:
- Fast ramp by flash heating
- Rapid cooling by radiation and thermal conduction to bulk

Temperature (°C):
- Top Temp
- Bot Temp

Time (s):
- 4.835 - 4.840 - 4.845 - 4.850 - 4.855
- 5.0 - 5.5 - 6.0
The Whole Wafer Can be Uniformly Processed in Just One Flash

- Process Uniformity: $3\sigma < 5K$; Range < 9K
- Fast ramp rates & whole-wafer flash exposure provide very cost-effective processing
The Ultra-Shallow Junction “Balancing Act”

- Millisecond annealing greatly improves activation compared to conventional RTA
- BUT....USJ needs a careful balance between diffusion, activation & defect annealing
 - Conventional MSA heating duration is too short for complete defect annealing: Longer pulses needed?
- Also: Many integration factors........

H.W. Kennel et al., RTP 2006 Conference

R.A. Camillo-Castillo et al. APL 88(1), 2006

- Time for Diffusion
- Time for Activation (50%)
- Temperature (ºC)
- Time (s)
- Furnace
- RTP
- Diffusion Length
- ms-anneal

- 1 nm
- 2 nm
- 5 nm
- 10 nm
- 20 nm

- 30kV Ge PAI Flash-assist RTP
- 8kV Ge PAI Flash-assist RTP
- 30kV Ge PAI 960ºC Spike RTA
- 30kV Ge PAI 760ºC RTP, 1100ºC RTA + 960ºC Spike RTA
- 8kV Ge PAI 706ºC RTP, 1100ºC RTA + 960ºC Spike RTA
- TEM Detection Limit
Integration Also Imposes (Dominant?) Requirements

- Activation, diffusion & defect annealing are just the starting point

- Many additional integration issues affect the choice of doping/annealing conditions
 - Some materials systems impose peak T limitations

- Sophisticated optimization of annealing conditions is required
 - Spike anneal / MSA integration
 - Process conditions: ramp rates, preheat T, peak temperatures, pulse durations……
 - Flexibility of anneal conditions is very valuable!
Extending the Length of Millisecond Anneal Duration Opens Up New Opportunities

• Motivation to explore the “long pulse” MSA regime
 – “Traditional MSA” < t_{anneal} < Spike RTA
 – MSA without the need for a separate spike anneal
 – Longer pulse allows lower peak temperatures: More “integration friendly”

• Junction objectives:
 – Adequate defect annealing
 – Controlled nm-level diffusion (e.g. gate overlap control)
 – Maintain high activation

• Integration aspects:
 – Compatibility with strain scheme
 – Compatibility with gate dielectric approach

• Motivation for a “few ms” anneal at temperatures <1250°C
Millisecond Annealing Can Be Extended to ~10 ms

- T-t models holding the device side at a constant yet elevated temperature for longer times
- If time at temperature >10 ms the bulk of the wafer approaches temperatures where excessive diffusion and deactivation may occur

Beyond 10 ms, MSA looks more & more like spike annealing

Practical range of a long ms flash
- Peak temp up to 1300°C
- Duration up to 10 ms
Extending Pulse Length Increases Wafer Processing Energy Requirement

- Keeping the Si surface hot for longer increases in total energy requirement
- Calculations illustrate the effect for an increasing anneal duration (T-50K)
 - Assume semi-infinite wafer, so that heat-sinking remains effective
 - The flat-top profile minimizes the total energy requirement, less energy is wasted during preheat
 - Laser scanning at low scan velocity increases energy requirement
 - Heat loss parallel to the wafer surface as well as down into the bulk of the wafer
 - Very challenging for wafer throughput, especially given strong scan overlap requirement
Improving Kinetic Trade-Off with Flat-Top Profile

• MSA can exploit kinetics to optimize the trade-off between competing processes: e.g. One desired process & one undesired process
 - e.g. Activation of B implants:
 • E_A (Diffusion) ~ 3.5 eV
 • E_A (Activation) ~ 5 eV
 - Short anneals at high T are very useful for activation/diffusion trade-off

• The effect of the anneal cycle can be summarized in t_{eff}

• Maximize:

\[
\frac{t_{eff - desired_process}}{t_{eff - undesired_process}}
\]

• The flat-top profile is most effective, because a larger fraction of the anneal is spent close to the peak temperature

$t_{eff} = \int_{0}^{t} \exp \left\{ -\frac{E_A}{k} \left(\frac{1}{T(t')} - \frac{1}{T_{REF}} \right) \right\} dt'$
Dopant Profile Tuning with the Flat-Top Flash: As

- Extended pulse duration at ~1200°C allows profile tuning
- Longer time reduces R_S and increases profile abruptness
Dopant Profile Tuning with the Flat-Top Flash: B

- Once again, we see improved activation and profile abruptness as pulse length at 1200°C is extended
Improving Dopant Activation

- Increasing the pulse duration demonstrated improved activation with a small increase in junction depth
- **As**: Concentration-enhanced diffusion and increased abruptness improves R_S
- **B**: BIC dissolution combined with concentration-enhanced diffusion improves R_S

Graph:

- **Green line**: 2×10^{15} As/cm2, 2.5 keV
- **Blue line**: 2×10^{15} B/cm2, 1 keV

Axes:
- **Y-axis**: Sheet Resistance (Ω/sq.)
- **X-axis**: Junction Depth (5×10^{18} cm$^{-3}$) (nm)

Legend:
- Increasing anneal duration (1 to 4 ms)
Millios® Flat-Top Flash Anneal Provides Device Benefits Compared to Spike RTA+Laser Annealing

- Long ms-flash was compared with a “combo process” of Spike-RTA + Laser Anneal (SOI process, poly/SiON gate)
- \(I_d - V_{gs} \) and \(V_{t(sat)} \) roll-off were very similar
- Long ms-flash NFETs needed only ~ \(\frac{1}{2} \) of the B halo dose and exhibit no anomalous corner leakage which is sometime found in spike RTA+laser NFETs. (Better B halo localization)

K.L. Lee et al. (IBM) and S. McCoy et al. (Mattson), IWJT 2010
Conclusions

• Extending the annealing time for millisecond anneals opens up a new regime for dopant activation & damage annealing combined with controlled diffusion

• Pulsed anneals at <1250°C for times up to ~ 10 ms can help overcome integration issues with new device structures
 – Beyond 10ms, the benefits of fast surface cooling are lost and the processing becomes very costly

• The Flat-Top Flash Annealing™ method brings additional advantages to millisecond annealing
 – Increasing the fraction of the anneal time spent at peak temperature can improve kinetic trade-offs
 – Most effective use of heat source energy, together with high wafer throughput
 – Significant improvements in doping profile shapes and activation