

Applications of Cluster Carbon – a Review

Karuppanan Sekar

Nissin Ion Equipment USA Inc., North Billerica, MA 01862, USA

Nissin Ion Equipment Inc., and SemEquip Inc

Carbon in Silicon

- Carbon is electrically inactive and substitutionally dissolved impurity in Silicon
- Implanted carbon forms strong gettering sites in Silicon and can act as sink for implantation-induced excess Si interstitials and thus avoids formation of dislocation loops.

Scheme of the Talk

Cluster Carbon Properties and Applications

- Self-amorphization
- Cold implants
- Diffusion barrier
- Si:C stressor layer
- Silicide stabilization

Scheme of the Talk

Cluster Carbon Properties and Applications

- Self-amorphization
- Cold implants
- Diffusion barrier
- ≻ Si:C stressor layer
- Silicide stabilization

Mass Spectrum of C₁₄H₁₄ molecule

ClusterCarbon Self-amorphization - C_5H_5 vs C_7H_7

 Going to a higher mass (from C₅ to C₇) at same implant condition yields about 25% increase in α-Si layer thickness

Scheme of the Talk

Cluster Carbon Properties and Applications

- Self-amorphization
- Cold implants
- Diffusion barrier
- Si:C stressor layer
- Silicide stabilization,

$XTEM - Si^+$ implanted Si(100) - 200keV, 5e14 atoms/cm²

1 µm

- > Even at -50°C, almost complete amorphization takes place.
- > At low Ts, accumulation of small defects causes amorphization
- At high Ts, larger defect complexes are formed leading to defective amorphization

JAPANESE JOURNAL OF APPLIED PHYSICS VOL. 30, NO. 12B, DECEMBER, 1991, pp. 3617-3620

Q- Si formation at 25, -30, -60 °C 10keV, 5E14 and 1E15 @25°C @-30°C @-60°C

C₇ 10keV 5e14/cm²

Amorphous Si Formation by Cluster Carbon at Low Temp.

Amorphous Si thick formed by Cluster C₇ implant at 25°C is almost the same as that of monomer C implant at "-100°C".
 With lowering the substrate temperature, a-Si thickness increases well beyond the a- Si thickness by monomer carbon implant.

Amorphous Si Formation by Heavier Cluster Carbon – (Halo, SDE Applications)

Scheme of the Talk

Cluster Carbon Properties and Applications

- Self-amorphization
- Cold implants
- Diffusion barrier
- Si:C stressor layer
- Silicide stabilization,

ClusterCarbonTM Co-Implant

Carbon co-implant provides the following:

- Shallower Junctions
- Higher Solid Solubility
- Improved Junction Abruptness

(Cluster Boron 500eV, 1e15 – Spike anneal 1050°C with and without Carbon)

EOR Defect Elimination : iRTP @ 900°C

XTEM: iRTP 900°C Diffusionless Anneal

With diffusionless anneal, no EOR defects with $B_{18}H_{22}$ and $B_{18}H_{22} + C_{16}H_{10}$.

C₇ as PAI implant and diffusion barrier (**RT**)

Diffusion control, low temp effect (IIT 2012)

Thick amorphous layer – efficient P diffusion suppression
 Even with tighter distribution, almost same Rs because of higher activation

Scheme of the Talk

Cluster Carbon Properties and Applications

- Self-amorphization
- Cold implants
- Diffusion barrier
- Silicide stabilization
- ✤ Si:C stressor layer

Nickel Silicide – advantages and issues

Advantages :

- One step low temp. formation
- Low resistivity
- Low Si consumption
- Does not suffer from resistivity degradation on narrow lines or gates

Issues :

- Rough interface between NiSi and Si
- NiSi phase is not thermodynamically stable in contact with excess Si
- NiSi films are morphologically unstable and prone to agglomeration
- Large junction leakage current
- Sheet resistance degradation due to oxygen contamination

One of the existing Solutions :

Use of metals as an alloying element to stabilize Nickel Silicide

NISSIN ION EQUIPMENT CO.,LTD.

Choice of elements :

ECS 210th Meeting – Abstract 1010

Electron Device Letters, Vol. 29 (2008) 89-92 ECS Transactions , 13 (2008) 397-404 (IMEC) Microelectronic Engineering, 88 (2011) 578-582

NISSIN ION EQUIPMENT CO.,LTD.

- NiSi:C as contact technology for MOSFETS with silicon-carbon (Si:C) source/drain (S/D) regions.
- Presence of carbon at NiSi:C grain boundaries and NiSi:C/Si interface modify the grain boundary and interfacial energies and thus influence the kinetics of NiSi:C silicidation.
- NiSi:C silicidation suppresses deep-level defects leading to better n+/p junction characteristics

Experimental Process flow: Ni silicide (bulk wafer)

```
wafer (N-type silicon: Implant C<sub>16</sub>,B<sub>18</sub>H<sub>22</sub>,BF<sub>2</sub>,B<sub>11</sub>)
Native oxide removal (HF 1 : 100)
Metal deposition
  (splits :Ni/TiN (15/10nm), Ni-Pd(5%)/TiN , Yb/Ni/TiN (1.5/13.5/10nm), ...)
1<sup>st</sup> Rapid thermal process
  (splits : 400 °C ~ 800 °C, 30s)
Selective wet etching (H<sub>2</sub>SO<sub>4</sub> : H<sub>2</sub>O<sub>2</sub> = 4 : 1)
2<sup>nd</sup> Rapid thermal process
Post-silicidation annealing (550°C ~ 700°C, 30min)
```

(collaboration study between SemEquip and CNU)

Experimental Process flow: Ni silicide (diode pattern)

Pattern wafer (N-type silicon: Implant C₁₆,B₁₈H₂₂,BF₂,B₁₁) Native oxide removal (HF 1 : 100) Metal deposition

(splits : Ni/TiN (15/10nm), Ni-Pd(5%)/TiN , Yb/Ni/TiN (1.5/13.5/10nm).....) Rapid thermal process (600 °C, 30s)

Selective wet etching $(H_2SO_4 : H_2O_2 = 4 : 1)$ Measure I-V characteristics (junction leakage current)

(collaboration study between SemEquip and CNU)

Impact of Carbon co-implants on silicide stability

- Clear advantages in Ni silicide resistance and stability with thermal anneals.
- This gain comes from the fact that a lower agglomeration effect is observed on both surface and depth when carbon is present in the silicide

(IMEC web site)

NICKEL SILICIDE :

Plan view SEM: Carbon effect – Lower agglomeration

25

X-SEM: Carbon effect

AFM Surface roughness: carbon effect

C₁₆ lower surface roughness

Thermally stable Ni silicide for DRAM applications

- Thermal budget constraints during the DRAM BEOL, Ni silicide is not stable and not usable unless its thermal stability is improved.
- Carbon implantation techniques to stabilize the ultra-shallow junction and S/D silicides to withstand the DRAM BEOL to improve the overall peripheral CMOS performance.
- ➢ Ref : IMEC website, CNU Korea , SemEquip Collaboration

CMOS periphery devices in Memory Applications

Carbon-based thermal stabilization techniques to improve the performance of CMOS periphery devices in memory application.

- Substantial current drive improvement,
- contact resistance lowering
- > RO delay improvement

Scheme of the Talk

Cluster Carbon Properties and Applications

- Self-amorphization
- Cold implants
- Diffusion barrier
- Silicide stabilization
- Si:C stressor layer

NMOS Device Performance

Mobility Enhancement vs % of [C]_{subs}

NISSIN ION EQUIPMENT CO.,LTD.

[C]_{subs} from HRXRD - 6keV, 2e15 atoms/cm² (Laser Annealing)

VLSI 2007 – pg 44

TEM – Monomer vs C_7H_7 - 6keV, 2e15 atoms/cm²

ECS 2007

XTEM for monomer C implant

$P + C_7 H_7 - HRXRD - [C]_{subs}$ (Borland et al RTP 2009)

Monomer C w/o PAI → low[C]sub → P4 on [C]sub is small.
Cluster C7: High [C]sub independent on PAI conditions.
There is no clear dependence on LSA temperature.

 $P_2 + C_7 H_7$

NISSIN ION EQUIPMENT CO.,LTD.

Rs results

 $(iRTP \ 1050^{\circ}C + fRTP \ 1200^{\circ}C)$

Dramatic increase in Rs beyond 1.75% atomic carbon. Precipitation of carbon beyond 1.75%

No regrowth defects after iRTP 1050°C for both C_7 and P_2+C_7 cases.

Extended Abstracts of the 2010 International Conference on Solid State Devices and Materials, Tokyo, 2010, pp677-678

Analytical Approach for Enhancement of nMOSFET Performance with Si:C Source/Drain Formed by Molecular Carbon Ion Implantation and Laser Annealing

Tadashi Yamaguchi₁, Yoji Kawasaki₁, Tomohiro Yamashita₁, Noriko Miura₁, Mariko Mizuo₂, Jun-ichi Tsuchimoto₁, Katsumi Eikyu₁, Kazuyoshi Maekawa₁, Masahiko Fujisawa₁, and Koyu Asai₁

¹Renesas Electronics Corporation, 751, Horiguchi, Hitachinaka, Ibaraki 312-8504, Japan ²Renesas Semiconductor Engineering Corporation, 4-1, Mizuhara, Itami, Hyogo, 664-0005, Japan

SSDM 2010 - RENESAS : Si:C – S/D formation

Fig. 1. Process flow of Si:C-S/D formation in nMOSFETs using C_7H_x implantation.

SSDM 2010 - RENESAS : Si:C – S/D formation

Table I. Process conditions and junction properties of nMOSFETs with Si:C-S/D.

	Process-A	Process-B
C ₇ H _x	Multi step*1	Single step*2
Р	2 keV 3×10 ¹⁵ cm ⁻²	2 keV 3×10 ¹⁵ cm ⁻²
RTA/Laser [°C]	1000/1200	1000/1200
C _{si:c} [%]	N.D.	0.33
SIMS X, [nm]	52	52
T _{si:C} [nm]	44	44
JL nFETs [A]	0.8 × 10 ⁻³	1.0 × 10-3
 10 keV 3 ×10¹⁵ cm⁻², 6 keV 3 ×10¹⁵ cm⁻², 1.5 keV 1.5×10¹⁵ cm⁻² 1 C profile 50 nm 	^{*2} 10 keV 3×10 ² . ^{*2} C profile 50 nm	¹¹⁵ cm ⁻² . 10 ²² 10 ²¹ 10 ²⁰ 10 ¹⁹ cm ⁻³

Multi-step implant vs Single step implant

SSDM 2010 - RENESAS : Si:C – S/D formation

Single Step implant showed better loff characteristics

Other applications

- Carbon implant for Photoresist stripping (carbon-implanted etch stop)
- Materials Modification
- Gettering implants
- Carbon implants in other materials....

SUMMARY

- Cluster Carbon and Applications
- Amorphization, Cluster Carbon (S/D, SDE, Halo implants)
- Cold implants (Shallow Junctions, Diffusion barrier, CMOS sensors etc)
- Si:C stressor layer
- Silicide stabilization (n-MOSFET and Memory Applications)
- Carbon implant for Photoresist stripping
- ➢ Other applications....