

ULTRA LOW THERMAL BUDGET LASER THERMAL ANNEALING FOR 3D SEMICONDUCTOR AND PHOTOVOLTAIC APPLICATIONS

Karim Huet, PhD

Applications Development

karim.huet@excico.com

Excico Company Snapshot

- Thermal processing solutions for semiconductor manufacturing using Ultrafast Annealing technologies and processes
 - strong Focus on SEMI Markets :
 - ⇔ Memory
 - \Rightarrow LOGIC
 - ⇒ CMOS Imagers
 - ⇒ Power Devices

Strong development of PV applications

✤Other: LED, MEMS,...

More than Moore = More materials & 3D design

?

SiC

LaO 7rO

					Hf(Si)O	
					AIO	
BEOL					Porous SiOC	
FEOL					SOI	
Starting Mat'l					SiGe	
Ŭ				TaO	TaO	
				SOP	SOP	
				SiOC	SiOC	
				Ta/TaN	Ta/TaN	
				Cu	Cu	
Courtesy of AS	SMI®			SiOF	SiOF	
			TiSi	CoSi	NiSi	
		Si(O)N	Si(O)N	Si(O)N	Si(O)N	
		TīW	Ti/TiN	Ti/TiN	Ti/TiN	
		WSi, MoSi	WSi, PtSi	W	W	
	(B)PSG	(B)PSG	(B)PSG	(B)PSG	(B)PSG	
Al-Cu	Al-Cu	Al-Cu	Al-Cu	Al-Cu	Al-Cu	
SiO, SiN	SiO, SiN	SiO,N	SiO,N	SiO,N	SiO,N	
Si	Si,epi	Si,epi	Si,epi	Si,epi	Si,epi	_
1960	1970	1980	1990	2000	2010	-

CHALLENGES

- Improve numerous material properties through annealing
- **3D Localized process control**

Low thermal budget is mandatory

The 3D Thermal Processes Challenge

SEMI & PV trends Process Flows New Material 2D to 3D Equipements Equipements Process Uniformity Material Selectivity Low Thermal Budget

+Pulsed Lasers+Wavelength selectivity+Single Die Anneal

New Annealing

CXCICO

New devices are demanding shorter anneals and higher temperatures

NCCAVS 2012 Junction Technology Group – Semicon WEST, San Francisco July 12th 2012

Controlling process depth is key to rapid, high-precision anneal, and 3D anneal control

- Selecting the right wavelength laser is key to getting nm Process Control
 - Long wavelength lasers have penetration that is too deep which could makes hardto-control anneal process
 - Controlling melt depth with long wavelength requires additional process steps adding cost and affecting yield

Today Controllable process depth requires a laser with wavelength of 200-350nm

NCCAVS 2012 Junction Technology Group – Semicon WEST, San Francisco July 12th 2012

Excico LTA can anneal selectively 2D and 3D structures

	Laser Thermal Annealing	Scanned ms- Anneal (Flash, Laser)	RTP	
Temperature	From 300 to >1400 °C	700°C/ 1300°C	<1200 °C	
Time at Temperature	< 1 µs	>1ms	>1s	
Process Achievement	Liquid phase epi + extreme activation + No diffusion	solid phase + better activation + less diffusion	solid phase + limited activation	
Depth Selective anneal	~1 to 1000 nm depth	Full Wafer depth	Full wafer depth	
Material Selective anneal	YES : single wavelength	Full wafer surface	Full wafer surface	

Excico LTA – Full Die Exposure capability

- Excico LTA Step and Repeat process
 - Uniform full device exposure (FDE)

LTA Junction Recrystallization process

3D AND BACKSIDE PASSIVATION OF THINNED WAFERS

NCCAVS 2012 Junction Technology Group – Semicon WEST, San Francisco July 12th 2012

Double Implant IGBT for Power Devices

Dopant Implantation

11

3D Multiple junction engineering

[K. Huet et al., RTP 2010]

CMOS IMAGING SENSORS

'3D' Backside Passivation/activation of CIS

Keep buried collectors non damaged by passivation step

NCCAVS 2012 Junction Technology Group – Semicon WEST, San Francisco July 12th 2012

Junction dopant profiles for CMOS imagers

[J. Venturini et al., IISW 2011 & Subtherm 2011]

EXCICO

Backside Single shot process: Imager Device performance

For same implanted depth 60 nm @ 1e17

- Low B₁₁ Dose
 - Less imp-induced defects
 - Shallower dopant tail

 \Rightarrow Excellent performance at low ED

- High B₁₁ dose (2X)
 - More imp-induced defects & Deeper dopant tail
 - \Rightarrow Higher ED needed for optimal performance
- Non-melt regime: Good backside passivation for low dose implant

Residual defects are more contributing to device performance than the Junction thickness

[J. Venturini et al., IISW 2011 & Subtherm 2011]

NEXT GENERATION 3D MEMORIES

ITRS 2011 – NVM Technology Roadmap

Non-Volatile Memory Potential Solutions

NAND Flash scaling after 2015

Source: IMEC

- 3D Charge Trapping is the chosen path
- Non charged based cell (ReRAM, PCRAM) comes close behind

Excico LTA enables Low Thermal Budget Crystallization

Longer anneal Pulse

- [Y. Hiroshima & all, Seiko Epson and DIMES, in AMLCD'03]
- Higher crystal quality and larger grains
 - Higher mobility and better TFT performance uniformity

Excico LTA for 3D NAND Flash memory

3D NAND: Vertical channel crystallization challenges

- Large grains High Quality Si: Low defects and High mobility
- Localize thermal budget in Silicon channel region
- Low thermal budget mandatory
 - ⇒ Keep 3D patterned structure integrity
 - ⇒ Avoid dielectric layers mixing with poly Si

Excico Laser Thermal Annealing Solution

- Selective anneal of Upper Transistor Si channel
- Uniform poly Si with large grains
- Damage free low thermal budget process
- High select transistor performance: Low leakage and high ON current

Aochi et al., IMW 2011

Excico

Excico LTA for 3D NAND Flash memory 3D Emerging Memories

ReRAM & PCRAM: Access Device design challenges

- Control Dopant Diffusion
- High dopant activation
- High Quality Si
- Low thermal budget mandatory
 - ⇒ Control dopant diffusion
 - ⇒ Avoid damaging fragile materials & 3D stacking

Excico Laser Thermal Annealing Solution

- Ultra low thermal budget and sub-µs process
- Melt process to achieve Large grain size and high activation
- UV Laser light for selective annealing of Si region

[K. Huet et al., IIT 2012, J. Venturini et al., IWJT 2012]

Lee et al., IEDM 2008

PHOTOVOLTAIC CELLS

Application strategy c-Si segment

✓ both roads taken at the same time

Applications details c-Si segment

high eff. cell type	Eff. %	LTA process
p-type PERL/PERC	19-20.5%	Silicidation for front side copper contacts
p-type PERL	19-20.5%	Boron activation for BSF
n-type PERT	19.5-21%	Boron activation emitter backside
Selective Emitters	17.5-19%	Laser doping front side (PSG)
SHJ (n-type)	19.5-23%	TCO anneal front &/or back side
IBC (n-type)	20-25%	Boron & Phosph. activation backside
SHJ-RCC (n-type)	21-25%	 TCO anneal front & rear Laser contacting

✓ several process paths for Excico on high efficiency c-Si cells

NCCAVS 2012 Junction Technology Group – Semicon WEST, San Francisco July 12th 2012

EXCICO

NiSi formation for Cu contacts on c-Si cells

\checkmark NiSi for mechanical adhesion of Cu contacts

[L. Tous et al., Proc. of the 2^{nd} Silicon PV, Belgium, 2012]

✓ PERC cell results with NiSi formation by laser:

NiSi

✓ ELA advantages vs. furnace vs. RTA :

- shallow emitter compatible (better control of thickness & composition)
- higher productivity + lower thermal budgets vs. furnace
- +0.6% abs. vs best RTA process
- in-line integration possible

Cell type		Jsc	Voc	FF	Eta	Rseries	pFF
		[mA/cm2]	[mV]	[%]	[%]	[Ohm.cm2]	[%]
05 O /or	Average	38.3	651.3	77.3	19.3	1.1	83.2
85 12/SQ	(6 cells)	\pm 0.1	\pm 2.1	\pm 1	\pm 0.2	\pm 0.1	± 0.3
SP Ag reference	best	38.4	653.5	77.8	19.5	1.0	83.4
05.0/	Average	39.1	649.2	77.7	19.7	0.8	82.2
	(5 cells)	\pm 0.3	± 1.1	±1	±0.2	±0.2	± 0.1
ps-laser + NI (ELA) /Cu	best	39.3	649.8	78.3	20.0	0.7	82.1

\rightarrow 20% efficiency & +0.4-0.5% absolute vs. SP Ag

Boron activation for rear junctions

Summary – LTA : a 3D enabling annealing process

- Cost and complexity of 2D scaling are moving devices design to 3D
- Ultra-fast annealing with the right duration is required
- Right wavelength selection is key to process integration success
- Successful integration of 3D Devices is today proven
 - Vertical 3D IGBT and Power Diodes
 - Backside CMOS Imaging Sensors
 - ✤ 3D Memories (Vertical channel & Emerging)
 - Applicable to various More than Moore Semi applications
- PV application development is promising
 - Silicidation for front side copper contacts
 - Boron diffusion & activation for BSF or backside emitters
 - Phosphorus diffusion & activation for Selective emitters
 - TCO anneal

Thanks for your attention!

Supporting « More than Moore » processes

