Laser Spike Annealing for sub-28nm Non-Junction Activation Applications

Jeff Hebb, Ph.D. Ultratech, Inc.

July 12, 2012

Outline

- Introduction
- Non-Ultrashallow Junction Applications
 - Front end of line
 - Middle of line
 - Back end of line
- Scaling to 450mm

Introduction

LSA101 Basic Platform (Single Beam)

- Long wavelength, Brewster angle, p-polarized → Within-die Uniformity
- Full-wafer temperature feedback control → Die-to-die, WtW Repeatability
- Localized stress field → Low stress

Jltratech

Dual-Beam LSA for Low Temperature Applications

Jltratech

Key highlights

- Preheat laser beam used at low power to enable CO2 absorption at low chuck temperatures
- Temperature measurement and control system designed for lower temperature range
- Used for middle of line processes such as:
 - Nickel silicide formation
 - Silicide contact resistance reduction

Ultratech

Dual Beam LSA for Long Dwell Applications

Key highlights

- Preheat laser beam enables a long dwell thermal profile (~10msec) to be superimposed on the CO₂ profile (100's μsec)
- Typically used for front end processes, e.g.,
 - Defect anneal
 - Solid phase epitaxy
 - Stress reduction

LSA vs FLA Long Dwell Cooling Comparison

- LSA relaxes to chuck temperature within 100msec, cooling by 3D conduction to the bulk Si (localized heating)
- FLA cools slowly from 800C (5-10sec), limited by radiation loss due to global heating (1D cooling)
- For FLA, this allows time for possible de-activation and diffusion

Jltratech

Laser Spike Annealing Process Space

 Dual-beam LSA enables a wide range of applications on a single platform

July 12, 2012

Jltratech

Pattern Effects for Different Annealing Technologies

Pattern effects caused by thin film interference variations → severe at short λ
Long λ insensitive to device film variations

Non-USJ Applications

LSA Applications in Advanced Logic

• Expand to non-junction related applications: strain engineering, interface engineering, silicide formation, film property modifications.

Ultratech

LSA For High-k Post-Depostion Anneal

Advantages of LSA for HK Anneal

- Lower gate leakage
- Smoother, void free film
- Higher k value due to more favorable phase mixing
- Can lead to lower EOT due to thinner interfacial layer (lower thermal budget)

*Sources: Triyoso et al., Appl. Phys. Letters (2008) Gilmer et al., ESSDERC (2006)

LSA For embedded SiC (NMOS Strain)

- Embedded SiC can be formed by epi-SiC
- LSA enables conversion of C_{int} to $C_{sub} \rightarrow$ better device performance

July 12, 2012

Ultratech

Embedded SiC Using Cryogenic Implant + LSA

Implant conditions: 2% implanted C C 4.6e15@11keV + C 7.5e14@5.5keV + P 3e15@7keV

(a) Non-optimized

(b) Optimized implant

(c) Optimized implant & LSA

July 12, 2012

LSA for Dopant Re-activation: Phosphorous

- P deactivation occurs at very lower temperature
- However, deactivation can be fully recovered by a 2nd LSA anneal (even at lower T than 1st LSA)

LSA for Dopant Re-activation: Arsenic

- For As, deactivation is small < 600°C.
- Reactivation also requires higher annealing temperature

July 12, 2012

LSA For Ni Silicide Leakage Reduction

 Low thermal budget nature of LSA minimizes silicide diffusion & junction leakage.

July 12, 2012

Pattern Effects For Nickel Silicide Applications

- Severe pattern effects of diode laser can impact yield as process windows shrink
- Uniformity of LSA reduces risk of yield loss and allows higher process temperatures

LSA for Silicide Contact Resistance Reduction

- Silicide contact resistance becomes more significant as devices scale down
- LSA can reduce Rc by increasing active doping concentration and modulating barrier height.

Jltratech

LSA For Low-k Curing

Ultratech

LSA can significant enhance the mechanical strength of porous low-k films

July 12, 2012

Scaling LSA to 450mm

Scaling LSA from 300mm to 450mm

- Scanning systems are inherently easier to scale to 450mm than "full wafer processing" systems
- Advantages: Within-die uniformity (low pattern effects), within wafer uniformity (full wafer temperature measurement and control), and low stress (localized heating)

JItratech

Summary

tratech

- As devices scale to sub-28nm, IC manufacturers are exploring and implementing LSA for more non-USJ steps (similar to history of RTP)
- We expect this trend to continue as devices move to 3D structures and new materials are introduced
- LSA (a scanning system) has fundamental advantages for scaling to 450mm, such as within-die uniformity, within-wafer uniformity, and low stress.