The case for thin film silicon solar

Technical Challenges and Opportunities

Kunal Girotra Engineering Manager

July 14, 2011

EFFICIENCY - SCALE - COST

Contents

- Introduction to thin film silicon
- Amorphous and microcrystalline silicon solar cells
- Micromorph tandem concept
- ThinSilicon technology
- Path to 12% module efficiency
- Light Trapping in Solar Cells
- Closing Remarks

Why thin film silicon?

Some advantages

- Higher absorption in a-Si and μc-Si over c-Si; need films only a few microns
- Easy to deposit at large scale; PECVD well matured technology due to LCD industry (1.1 m X 1.4 m)
- Monolithic integration and automation
- Lower temperature co-efficient; higher panel output (kwh output /kW installed)
- No use of exotic or expensive materials i.e. In, Te, Ag
- Energy payback sooner than c-Si

Absorption co-efficient vs energy band gap for various semiconductor materials

Two types of TF-Si: a-Si and μ c-Si

Amorphous sili	con ((a-Si)
----------------	-------	--------

Microcrystalline Silicon (µc-Si)

Highly disordered; dangling bonds passivated by hydrogen	Small grains or nanocrystals surrounded by amorphous matrix
Low μτ product	μτ product a-Si < μc-Si < c-Si
Staebler-Wronski effect leads to light induced degradation	No evidence of Staebler-Wronski effect
Eg ~1.75ev; absorbs visible spectrum	Eg ~1.1ev; absorbs visible + IR
Thickness ~ 0.3µm; low deposition time	Thickness ~ 1-3µm; higher deposition time

Deposition technology

Plasma Enhanced CVD

- Low deposition temperature
- Large area deposition
- Easy doping and alloying
- SiH4, H2, PH3, B2H6

	Amorphous silicon (a-Si)	Microcrystalline Silicon (µc-Si)
H2/SiH4 ratio	4 to 1 to 25/1	100/1 to 200/1
Power density (mW/cm2)	~ 100mW/cm2	~ 500mW/cm2
Pressure (Torr)	1 to 3 torr	5 to 9 torr
Deposition Rate	3 ~ 5A/s	5 ~ 7 A/s

Key device difference in TF-Si vs c-Si

C-Si devices are p-n junction; TF-Si are p-i-n, Why?

- Minority carrier diffusion in c-Si is good; poor in a-Si
- $L_{diff} = \sqrt{D\tau} \approx \sqrt{\frac{k_b T}{q}} \mu \tau$, but $\mu \tau$ is extremely low in a-Si Hence, the need for drift driven device, $L_{drift} = \mu \tau E \approx \mu \tau \frac{V_{bi}}{L_i}$
- i-layer in p-i-n provides the internal electric field E

Single junction cells

- Single junction a-Si modules are no longer competitive @ 6% efficiency
- Low efficiency due to lower Jsc (no IR absorption) and low FF (due to light induced degradation)
- The electric field is reduced in degraded state due to charged dangling bonds
- Excess impurities in the film (O, C) will also reduce electric field

Challenges to increase efficiency

Suppress light induced degradation

- Stable material like polymorphous Si or μc-Si:H
- Multi-junction cells a-Si cell receives less light; low LID

Increase efficiency

- Capture light from IR part of the spectrum use low band-gap materials
- Improve light trapping multiple light passes
- Multi-junction cells split the solar spectrum

- Mixed phase material small crystallites passivated by amorphous matrix
- Highly dilute SiH4 with H2 excess hydrogen etches weaker silicon bonds to create small crystallites
- Hydrogen passivation crucial for device performance

- Incubation amorphous layer should be avoided
- Uniform crystallinity throughout the film is preferred for high Voc
- Avoid ion bombardment to preserve crystal structure

Picture courtesy C. Sholten, IMT Neuchatel

- Raman shift indication of crystalline fraction (c.f.) in the film
- Strong Voc correlation with crystal fraction ~ 50 to 60% volume c.f. optimum

- Device performance highly sensitive to impurity concentration in film
- Reactors have to be maintained contaminant free
- Oxygen acts as a charged defect that reduces the red light response considerably

Growth of microcrystalline silicon depends on underlying texture

Picture courtesy of Michio Kondo, AIST

- Single junction microcrystalline silicon cell efficiency ~ 8.0-9%
- Voc = 0.53V , Jsc = 22 mA/cm2, FF =0.7 (1.1 μm film)
- Jsc being high, single junction mc-Si modules not made (losses in TCO)

How do we increase efficiency of thin film silicon?

- Multi-junction cells split the solar spectrum (a-Si + μc-Si)
- Capture light from IR part of the spectrum use low band-gap materials
- Improve light trapping multiple light passes

Micromorph or tandem cell

- Split the solar spectrum \rightarrow a-Si captures visible light and μ c-Si IR
- $Voc = Voc_{top} + Voc_{bot}$ and $Jsc = Jsc_{top} = Jsc_{bot}$
- Lower current device means less resistive losses in TCO layers

Micromorph or tandem cell

- Energy gaps of $1.1eV(\mu c-Si)$ and 1.8eV(a-Si) are optimal combination
- Top cell receives less light leading to reduced overall LID
- A-Si thickness ~ 0.3 μ m and μ c-Si thickness ~ 1-3 μ m.
- Standard lab stable cell efficiencies 11-12%. Production module efficiencies between 8-10% (Sharp, Oerlikon, MHI)

The ThinSilicon Way

- All glass based TF-Si companies do superstrate or p-i-n configuration
- ThinSilicon pursues substrate or n-i-p configuration. Why?

Benefits of Substrate configuration

1. High temperature a-Si deposition

- In superstrate or p-i-n, temperature of a-Si ilayer <200C due to boron diffusion
- For substrate or n-i-p, temperature of a-Si can be >200C – no boron diffusion
- Increased a-Si temperature reduces band gap leads to higher Jsc in the red
- High temperature films more stable leading to lower LID. (Si-H >> Si-H2)
- Higher temperature a-Si can be deposited at higher rates

Benefits of substrate configuration

2. Improved light trapping

- In superstrate or p-i-n, front TCO needs to be transparent, textured & conductive
- For substrate or n-i-p, the back reflector provides texture & conductivity need not be transparent
- This greater degree of freedom opens up several avenues of providing texture

3. Higher Voc in a-Si cell

Protocrystalline p-layers possible in substrate or n-i-p configuration; results in higher Voc due to high bandgap

Module Fabrication

- Laser scribing used to make monolithic integration of module
- Green and IR lasers used to remove each layer
- Superstrate configuration uses glass side scribing
- Substrate configuration uses film side scribing
- Production laser scribing speeds of 1m/s are routine

ThinSilicon Efficiencies

- State of the art cell efficiencies 13%+.
- Considering LID and other losses, module efficiencies > 10%+ modules
- No special interlayers or AR coatings used
- Technology transfer to GEN5 size PECVD reactor underway
- Production level depositon rates used

Path to 12% modules

- 10% modules not good enough to compete with competition
- But 12% modules @ 0.5\$/watt very attractive
- Stable cells of 13.8% needed

How do we get there?

- Multi-junction cells split the solar spectrum (a-Si + μc-Si)
- Capture light from IR part of the spectrum use low band-gap materials
- Improve light trapping multiple passes to increase absorption
- Some modeling results would be helpful

Optical and Electrical Modeling

- Janez Krc modeled several losses taking place as light enters the cell
- What if we were able to absorb most if not all of the light?

Optical and Electrical Modeling

Janez Krc et al. performed optical & electrical modeling using simulator SUNSHINE Several assumptions made to construct an ideal tandem cell

- Ideal TCO haze parameters H = 1
- Broad (lambertian) angular distribution function (ADF) of scattered light
- Reduced absorption in optically non-active layers (TCO & doped layers)
- Improve back reflector with enhanced reflectance of 98% (presently @ 80%)
- Improve light in-coupling by ARC, intermediate reflector
 Ideal tandem stable solar cell efficiency = 15.8% → 13.5% module efficiency

Optical and Electrical Modeling

- Almost all of the **n** increase comes from Jsc
- Several assumptions contribute differently to Jsc of top and bottom cell

Areas of focus for ThinSilicon

- Make back reflector texture as close to lambertian as possible
- Reduce optical absorption in doped layers
- Reduce plasmon absorption at back TCO/metal interface

Source Janez Krc 2008

Light trapping

- Increase optical path length in silicon
- Optical path is **m** times longer than cell thickness
- Yablonovitch et al. calculated $m = 4n^2$. For air-semiconductor system m ~ 50
- But for TCO-semiconductor system, m ~ 16
- Present calculated value of m in a standard uc-Si cell is 5. (5 passes only)
- There is room for improvement! How?

Possibly 2 ways

- Reduce plasmonic absorption at metal-TCO interfaces
- Improve texture of back contact to induce internal reflection

Absorption losses in TCO/metal systems

Reflectance Spectra

- Significant increase in reflectance of TCO/metal systems
- Overall efficiency increase by 10% relative
- Significant, but still lots of room to improve

Different types of back contact texture

None of the commercially available textured TCO films provide ideal light trapping

SnO2:F

Wet etched ZnO:Al

LPCVD ZnO:B

Some novel ideas include

- Texturing glass off the float line Dow Corning, Intersolar 2011
- Substrate with nanocones Professor Yi Cui, Stanford University
- Plasmonic nanostructures Professor Harry Atwater, Caltech
- Diffraction gratings 1-D, 2-D Professor Miro Zeman, Delft University

Other advanced cell concepts

Tandem cell with Intermediate Reflector

- Interlayer reflects light back into the top cell
- Need for interlayer to be transparent and conductive

Triple junction cell

- Without Ge, difficult to reduce band gap of middle cell
- Increases manufacturing complexity

Energy Yield Output of thin film silicon

Energy Yield = Energy output (kwh) / Rated Watt (W)

- Thin film silicon has higher energy yield than c-Si in hot climates and diffuse light conditions
- Amorphous silicon has lower power loss temperature coefficient
- (-0.2%/K for a-Si vs -0.4%/K for c-Si)

• Thin film Silicon performs better under highly diffuse light conditions – due to blue rich spectrum

Grunow et al, 24th PVSEC Conference

Mitsubishi tandem module data sheet

Summary

- Present status of thin film silicon ~ 8-10% module efficiency
- ThinSilicon's substrate configuration allows possibility of >10% module efficiency
- To reach 12% module efficiency, significant improvement in light trapping is needed

Email: kunal.girotra@thinsilicon.com