

Design, Modeling, and Optimization of Silicon Solar Cells and Modules

Victor Moroz

JTG @Semicon West 2011, San Francisco

Outlook

- Introduction
- Financial analysis
- Optical performance of PV cell
- PV cell optimization
- PV module analysis
- Summary

Outlook

Introduction

- Financial analysis
- Optical performance of PV cell
- PV cell optimization
- PV module analysis
- Summary

PV System Challenges

- Improving PV efficiency
- Optimizing for design performance and target reliability
- Reducing the effects of variation on system performance
- Predicting manufacturing yields
- Lowering production costs

Addressing Issues at All Stages

Cell

Module

System

Synopsys TCAD tools Synopsys Saber tools

Design criteria – Cell Level

- Maximize efficiency
- Optimize cell: contact pitches, junctions, anti-reflective coatings, etc.

Design criteria – Module Level

- Minimize effect of interconnects on performance
- Minimize impact of cell variation or degradation on module performance

Design Criteria – System Level

- Maximize system performance accounting for diurnal solar inclination
- Maximize system level efficiency delivered to the grid, including inverter system

Why Simulate Solar Cells?

- Continuous innovation makes cells more complex
 - More process and geometrical variables
 - 3D effects, complex light path, etc ...
- It's impractical to design new cells without simulation
 - Too many experiments are needed to investigate design space
 - Risks missing optimum design and market window

Solar Cell Simulation Flow

7

Outlook

Introduction

Financial analysis

- Optical performance of PV cell
- PV cell optimization
- PV module analysis
- Summary

Solar PV Driving Force : \$/W

Average Selling Price - US \$ per Watt

Source: iSuppli Corp

R&D cost ~ 1.5%

(about 1.2GW shipment)	(thousands)		
Net revenues	\$2,000,000		
Cost of revenues	\$1,320,000	66.0%	
Gross profit	\$680,000	34.0%	
Operating expenses			
SG&A	\$160,000	8.0%	
R&D	\$30,000	1.5%	•
Total operating expenses	\$190,000	9.5%	
Operating income	\$490,000	24.5%	

Cost	Production cost (\$)	Process Cost
Watt	\sim Output power (W) \sim	Conversion efficiency

Efficiency vs Profit

- Impact of $\Delta E = 0.5\%$
 - − E₀=20% -> E=20.5%
 - $\Delta E/E_0 = 2.5\%$
 - 2.5% more power output
 - 2.4% less cost per Watt
 - 2.4% more gross profit

2.4% more gross profit = \$1.32B * 2.4% = \$32M¹
About the same as R&D budget (\$30M)

¹Assume the same cost per unit module and wattage sales

Outlook

- Introduction
- Financial analysis

Optical performance of PV cell

- PV cell optimization
- PV module analysis
- Summary

Measured Texture

Source: AMAT

Simulated Surface Texture

Robust mesh and geometry handling makes it possible to model!

Behavior of UV light (0.3um Wavelength)

- Absorption in Si happens within one micron from surface
- Typically one or two reflection events
- Only top surface matters

Behavior of Visible Light (λ =0.6um)

Behavior of Infrared Light (λ =0.9um)

- Absorption in Si happens within hundreds of microns
- Dozens of reflection events
- Both the top and the rear surfaces matter

Reflectance Curves: Texture is Good

Texture reduces reflectance by 3x

Reflectance Curves: Nitride is Good

Nitride anti-reflective layer reduces reflectance almost to zero at mid-range

Model Accuracy

Calibrated model captures Si texture and nitride ARC film

Si data from AMAT

Outlook

- Introduction
- Financial analysis
- Optical performance of PV cell

PV cell optimization

- PV module analysis
- Summary

c-Si Solar Cell with Rear Point Contacts

Rear Point Contact Optimization

Predictable Success

Junction Optimization

Predictable Success

Modeling Major Effects

- Optical Reflectivity
- Surface Recombination
- Contact Resistance
- Bulk Recombination
- Current Crowding

Current Crowding Pattern

Current crowding is observed in both lateral directions, which makes it a 3D effect

Rear Contact Optimization

Junction Optimization

Junction Optimization

Outlook

- Introduction
- Financial analysis
- Optical performance of PV cell
- PV cell optimization
- PV module analysis
- Summary

System Integration & Optimization

• Simulation provides integrated test, validation and optimization environment for all aspects of the system:

Environment

Modules to Arrays and Systems

- Design problem: Thermal Effects on Module/Array performance and Maximum Power Point
- Analysis of faults on strings within the array

Summary

- 3D cell simulation can optimize:
 - Light absorption
 - Rear point contact placement
 - Junction design
- Optimal contact & junction design can boost cell efficiency by more than 3%
- Early validation of novel cell design
- Development of application-optimized cells, modules and arrays
- System level virtual prototyping for test & validation before anything physical is built

