

Semilab Semiconductor Physics Laboratory Co. Ltd.

www.semilab.com

Non-contact metrology for Advanced Emitter Structures

Andrew Findlay - Director of Global Sales

Co-authors: Dr Lubek Jastrzebski, Istvan Sandor, Miklos Tallian, Dr Greg Merklin.

7/15/2011

Semilab Metrologies for the Semiconductor and Photovoltaic Industries

Semilab today

SEMILAB

Main activity: Development, manufacturing and marketing of metrology equipment for the semiconductor and photovoltaic industries.

- Employees: ~450 worldwide
- Laboratory, office and manufacturing space: 11,000 m², 3,000 m² in the US
- 80 physicists, 29 employees holding a Ph.
 D. in physics
- Installed base: more than 3,000 units
- Patents: wholly owned 90, applications 8, lincensed – 41
- 4th biggest 'pure-play' metrology company in the industry

Non-contact sheet resistance (SHR) measurements

- Principle of Junction Photovoltage (JPV) method, and correlation to 4PP
- 2. High resolution SHR probe: resolution and mapping capability
- 3. Model Based Infra-Red reflectometry

1. Traditional PV wafer after emitter diffusion

2. Selective emitter structure

3. Example of a back contact cell structure

Semilab Semiconductor Physics Laboratory Co. Ltd.

www.semilab.com

I. Non-contact Sheet Resistance (SHR) measurements

Using the Junction Photovoltage (JPV) method

Noncontact Junction Photo-Voltage, JPV, Measurement of Sheet Resistance

• Chopped LED light (a.c) generates carriers that are separated by the junction and create a.c photo-voltage signal

SEMILAB

 $\boldsymbol{\varphi}$

- Voltage spreads laterally from excitation spot and spreading distance increases with decreasing the sheet resistance
- Spreading JPV signals V_{in} and V_{out} are measured with two capacitive electrodes
- Sheet resistance R_S is calculated from the signal ratio V_{in}/V_{out} at elevated light chopping frequency

- JPV signal is measured as a function of modulation frequency
- JPV frequency dependance is function of Rs, leakage and capacitance. Each of them has dominant influence in different frequency range.
- Leakage influences low frequency JPV
- Rs mostly influences high frequency JPV

JPV ; Rs and leakage determination

- Determination of R_s, C_d, J_{leak} by fitting the theoretical solution (Bessel functions) into measured JPV curves at inner electrode
- Full wafer mapping at a frequency where signal is influenced only by R_s, or leakage.

SEMILAB

 For PV application JPV method is applicable just at higher frequencies (from125 kHz), where the spreading of signal is small compared to the sample size. In this region J_{leak} is not measureable. Frequency dependence of JPV signal

4pp and JPV Sheet Resistance Correlation

This non-contact method is widely used in production for monitoring of blanket diffused emitters.

Semilab Semiconductor Physics Laboratory Co. Ltd.

www.semilab.com

II. High Resolution Sheet Resistance measurements

for selective emitters and back contact cells

Theory of operation of HR-SHR

- A single smaller pickup electrode is used, with sensor for height control.
- The HR-SHR head consists of an excitation LED light source illuminating the wafer under test in a spot, and a ring-like capacitive electrode to give non-contact measurement of the photovoltage signal.
- By measuring the photovoltage signal at a given distance from the light spot we can get information on the sheet resistance.
- The sheet resistance of the material is proportional to measured photovoltage signal but calibration is required. HR-SHR can be calibrated by a standard SHR head or by four-point-probe.

Physics of JPV signal spreading

- Planar junction; signal spreading 2 dimensional (junction plane; x,y)
- Selective emitter: signal spreading mostly one dimensional along selective emitter length which gives high conductivity path (few times lower resistance than in perpendicular direction)
- Rate of signal spreading depends on:
 - 1) doping (Rs) and
 - 2) geometry; mostly emitter width and to some extend pitch
- Separate calibration is required for each geometry

High Resolution (HR) - SHR

Resolution test:

Signal change from 10% to 90%: **Resolution 600um**

High Resolution (HR) - SHR

Applications

Advanced Photovoltaic samples

- without pattern
- with selective emitter
 - min. 500 µm; working on higher resolution.
- Back contact cell structures

High resolution Sheet Resistance Map and linescan on diffused solar wafer

Effect of emitter width (same calibration regardless of geometry)

Product specification

- Light source: LED with 470 nm wavelength (depends on junction depth)
- Probe diameters: 0.5 mm
- Lateral resolution: 0.5 mm
- Samples: np or pn structure (Diffused or implanted-USJ)
- Raster in X-Y mapping: 0.125, 0,25, 0.5, 1, 2, 4, 8 and 16 mm, or single point measurements at pre-defined points (up to 50)
- Measurement speed: 50ms/data point
- Measurement time: <1h for 6" wafer 0.5mm lateral resolution
- Resolution in ohm/sq: 0.1%
- Measuring range: 10 ohm/sq to 1000 ohm/sq
- Min. junction depth: down to 5nm
- Repeatability: <1%

Semilab Semiconductor Physics Laboratory Co. Ltd.

www.semilab.com

III. Model Based Infrared Reflectometry (MBIR)

MBIR Measurement Principle - 1

- Reflections from layer interfaces create interference patterns in reflectance spectra.
- Modeling the reflectance spectrum allows determination of trench/via or thickness parameters.

IR reflectivity is a function of free carriers in the surface layer

Simulated reflectance spectra for various activated implant dose at the typical junction depth (X_j = 10 nm)

* The relaxation time $\tau = 13 \times 10^{-15}$ sec is assumed for the modeling. This is a typical value for medium doped silicon, τ for USJ may be different.

Signals have very weak sensitivity junction depth; making this ideal sheet resistance measurement

- Nearly identical reflectance curves for two implant profiles with the same "dose times depth" product. The probing wavelength is too long compared to the junction depth.
- Essentially the sheet resistance measurement.

Repeatability: 1 sigma < 1%

- The experimental IR3000 system noise (taken from a bare Si measurement) was added to the predicted reflectance for the 2x10²⁰ cm⁻³ x 10 nm implant (see the chart).
- The spectra were then fitted for the implant dose. The " 1σ " repeatability is ~0.9%.
- This repeatability will likely stay roughly the same as ITRS predicts nearly constant sheet resistance spec for 2006-2012 (and no data beyond 2012).

Line scan across selective emitter structures:

MBIR signal

Spot size: 50um

Semilab provides 3 solutions for noncontact emitter sheet resistance measurements, all with mapping capability:

SEMILAB

- SHR: non-contact sheet resistance using the JPV method, for blanket diffused / implanted wafers
- High resolution SHR: for selective emitters – with resolution of ~500um (to 300um)
- Model Based Infra-Red reflectometry (MBIR): under development for PV;

1. Traditional PV wafer after emitter diffusion

2. Selective emitter structure

3. Example of a back contact cell structure

I would like to acknowledge my colleagues for their contributions to this presentation:

Istvan Sandor – specialist on SHR and HR-SHR Dr Greg Merklin – specialist for MBIR technology Dr Lubek Jastrzebski Miklos Tallian