Plasma Doping of Silicon Fin Structures

S. Felch, C. Hobbs¹, J. Barnett², H. Etienne, J. Duchaine, M. Rodgers³, S. Bennett⁴, F. Torregrosa, Y. Spiegel, and L. Roux

IBS, Peynier, France
¹SEMATECH, Albany, NY, USA
²SEMATECH, Austin, TX, USA
³CNSE, Albany, NY, USA
Outline

- Introduction to plasma doping and 3D doping challenges
- Experimental details
 - PULSION hardware features
 - Si fin test structures
- Results
 - SIMS profiles for BF$_3$ and AsH$_3$ plasma implants into bare wafers
 - Amorphous layer produced by BF$_3$ plasma implant
 - XSEM images of fins chemically stained to highlight B dopant
 - Top-down SIMS profiles through unannealed and annealed fins doped by BF$_3$ and AsH$_3$ plasmas
 - XTEM image of annealed BF$_3$ plasma doped fin
- Summary
Introduction

- Plasma doping in R&D for over 2 decades
 - Ultra-shallow junctions
 - Conformal doping of trenches and fins
- Two very high dose, DRAM applications in production today
 - Polysilicon gate counter-doping
 - Contact doping
- Multiple gate and FinFET devices now in development to enable continued scaling
 - Candidate replacements for conventional planar CMOS devices
 - Excellent short channel effect immunity
 - Conventional, directional beam-line implant processes not well-suited
 - Plasma doping is an attractive implant alternative
 - Uniform junctions in 3-dimensional structures
 - Damage-free after anneal
3D Doping Challenges

- 3D implant is a combination of:
 - Direct implant
 - Sputtering effect
 - Deposition

- 3D doping performance targets:
 - Good conformity
 - No fin erosion

- Fine process parameter tuning is needed to achieve optimal 3D performance.

- Key Factors of Success:
 - Large number of process parameters
 - Wide process window for each parameter
 - Independent tuning of process parameters
PULSION® Hardware Features for 3D Plasma Doping

- Wide process range due to remote plasma source
 - Independent tuning of plasma density and chamber pressure
 - Adjustable pressure differential between source and chamber: up to 2 orders of magnitude
 - Multiple independent knobs to find optimal process conditions and chemistries
 - Ability to balance implant versus deposition to get best conformal doping

- Use of low implant energies
 - No fin corner rounding and height erosion
 - Thin amorphous layers
 - Minimal damage after implant and anneal
Silicon Fin Test Structures

- Fins wider than 16nm node device, but useful to evaluate lateral implant depth and diffusion of dopants
- Fabricated on bulk-Si wafers
- Plasma doping using BF$_3$ or AsH$_3$ gas
- Anneal splits to simulate source/drain junction anneals
- Sample analysis
 - Top-down SIMS after additional amorphous Si deposition and CMP
 - XSEM after delineation etch
 - XTEM to compare vertical and horizontal fin damage
BF₃ SIMS Profiles for Four Wafer Voltages

- Implant depth proportional to wafer voltage
- Low energies desired to form ultra-shallow junctions and to minimize sputtering, fin erosion, and implant damage

SIMS vs HV

Xj vs HV

C [at/cm²]

Depth [nm]

Xj [Å]

X [Å]

HV [kV]

HP BF3 5kV 1E15

HP BF3 1kV 1E15

HP BF3 0,5kV 1E15

HP BF3 0,2kV 1E15

[ibis]

[axcelis] Powered by Insight
SIMS Profile for BF$_3$, 0.5 kV, 1E15 cm$^{-2}$

- 11B depth at 1E18 cm$^{-3}$ = 7.69 nm
- Total SIMS dose (11B + 10B) = 4.35E14 cm$^{-2}$
- Both B isotopes detected, since this gas was not isotopically enriched
Amorphous Layer Thickness for USJ Implant

- **HRTEM** image of BF$_3$, 0.5 kV, 1E15 cm$^{-2}$ implant
- **Thickness of amorphous Si layer** ~2 nm
 - Thin enough to leave crystalline Si region in interior of 16nm node fin and enable complete regrowth of fin Si
Conformal doping of as-implanted sample
 - White regions on top of fins, along sidewalls, and between fins are B-doped, not B deposition on surfaces of fins (see next slide)
 - Equal thicknesses of all regions

Entire fin is light-colored after PMOS source/drain anneal
 - Anneal caused B to diffuse toward center of fin
Unchanged Dimensions of Plasma Doped Fins

- White layer is inside fin Si, since no change in fin dimensions and bright, white layer disappears in annealed sample
 - White layer is thicker than expected amorphous layer
 - Expected junction depth is close to thickness of white layer
- No evidence of corner rounding or fin erosion
SIMS Depth Profiles through BF$_3$ Plasma Doped Fins

- Anneal improved top-to-bottom uniformity of fin doping
 - Sputtering from fin bottoms may be dominant mechanism
- Significant B outdiffusion caused by anneal
 - Annealed B concentration ~ B solid solubility limit and maximum electrical activation level for typical spike anneal
- 10B isotope much lower than 11B due to use of isotopically enriched BF$_3$ gas
XTEM Images of Annealed BF$_3$ Plasma Doped Fins

- No visible damage along tops or sidewalls of fins
- Regrown Si shows good crystalline quality throughout fin
- Thin (~2nm) native oxide present around fin
SIMS Depth Profiles for AsH₃ Implants

- For 1 kV implant, As depth at 1E18 cm⁻³ is 12 nm
- As studied as n-type dopant due to its high electrical activation and low diffusivity
SIMS Profile of Arsenic USJ with Flash Anneal

- AsH₃, 0.3 kV, 2E14 cm⁻²
- 1200°C flash anneal
- As depth at 1E18 cm⁻³ is 7 nm
SIMS Depth Profiles through AsH₃ Plasma Doped Fins

- Top-to-bottom doping uniformity along sidewalls is quite good for both samples
- As sidewall concentration decreased by half order of magnitude due to NFET source/drain anneal
 - Much less than that for BF₃ implanted fins
 - Concentration at fin tops and bottoms decreased by ~ order of magnitude
 - Due to combination of diffusion into fin and substrate and outdiffusion
- As tail extending to right of fin bottom is due to As diffusion into substrate
Summary

- Plasma doping has good conformality around fin structures for source/drain doping applications
- Subsequent annealing diffuses dopant toward center of fin
- Top-down SIMS through fins indicated that subsequent anneal caused significant Boron out-diffusion for BF$_3$ plasma implant, whereas As out-diffusion for AsH$_3$ plasma implant was smaller
- TEM analysis of annealed samples found no significant damage along top or sidewall of BF$_3$ plasma implanted fin