Plasma Doping of Silicon Fin Structures

S. Felch, C. Hobbs¹, J. Barnett², H. Etienne, J. Duchaine, M. Rodgers³, S. Bennett⁴, F. Torregrosa, Y. Spiegel, and L. Roux

IBS, Peynier, France ¹SEMATECH, Albany, NY, USA ²SEMATECH, Austin, TX, USA ³CNSE, Albany, NY, USA

Outline

- Introduction to plasma doping and 3D doping challenges
- Experimental details
 - PULSION hardware features
 - Si fin test structures
- Results
 - SIMS profiles for BF₃ and AsH₃ plasma implants into bare wafers
 - Amorphous layer produced by BF₃ plasma implant
 - XSEM images of fins chemically stained to highlight B dopant
 - Top-down SIMS profiles through unannealed and annealed fins doped by BF₃ and AsH₃ plasmas
 - XTEM image of annealed BF₃ plasma doped fin
- Summary

Introduction

- Plasma doping in R&D for over 2 decades
 - Ultra-shallow junctions
 - Conformal doping of trenches and fins
- Two very high dose, DRAM applications in production today
 - Polysilicon gate counter-doping
 - Contact doping
- Multiple gate and FinFET devices now in development to enable continued scaling
 - Candidate replacements for conventional planar CMOS devices
 - Excellent short channel effect immunity
 - Conventional, directional beam-line implant processes not well-suited
 - Plasma doping is an attractive implant alternative
 - Uniform junctions in 3-dimensional structures
 - Damage-free after anneal

3D Doping Challenges

- **3D** implant is a combination of:
 - Direct implant
 - Sputtering effect
 - Deposition
- **3D** doping performance targets:
 - Good conformality
 - No fin erosion
- Fine process parameter tuning is needed to achieve optimal 3D performance.
- Key Factors of Success:

- Large number of process parameters
- Wide process window for each parameter
- Independent tuning of process parameters

PULSION® Hardware Features for 3D Plasma Doping

- Wide process range due to remote plasma source
 - Independent tuning of plasma density and chamber pressure
 - Adjustable pressure differential between source and chamber: up to 2 orders of magnitude
 - Multiple independent knobs to find optimal process conditions and chemistries
 - Ability to balance implant versus deposition to get best conformal doping
- Use of low implant energies
 - No fin corner rounding and height erosion
 - Thin amorphous layers
 - Minimal damage after implant and anneal

Silicon Fin Test Structures

- Fins wider than 16nm node device, but useful to evaluate lateral implant depth and diffusion of dopants
- Fabricated on bulk-Si wafers
- Plasma doping using BF₃ or AsH₃ gas
- Anneal splits to simulate source/drain junction anneals
- Sample analysis
 - Top-down SIMS after additional amorphous Si deposition and CMP
 - XSEM after delineation etch
 - XTEM to compare vertical and horizontal fin damage

Powered by Insight

BF₃ SIMS Profiles for Four Wafer Voltages

- Implant depth proportional to wafer voltage
- Low energies desired to form ultra-shallow junctions and to minimize sputtering, fin erosion, and implant damage

SIMS Profile for BF₃, 0.5 kV, 1E15 cm⁻²

- 11B depth at 1E18 cm⁻³ = 7.69 nm
- Total SIMS dose (11B + 10B) = 4.35E14 cm⁻²
- Both B isotopes detected, since this gas was not isotopically enriched

ion beam services

Amorphous Layer Thickness for USJ Implant

- HRTEM image of BF₃, 0.5 kV, 1E15 cm⁻² implant
- Thickness of amorphous Si layer ~2 nm
 - Thin enough to leave crystalline Si region in interior of 16nm node fin and enable complete regrowth of fin Si

XSEM Images of Fin Structures after BF₃ Plasma Doping

Anneal caused B to diffuse toward center of fin

ion beam services

White layer is inside fin Si, since no change in fin dimensions and bright, white layer disappears in annealed sample

- White layer is thicker than expected amorphous layer
- Expected junction depth is close to thickness of white layer

No evidence of corner rounding or fin erosion

SIMS Depth Profiles through BF₃ Plasma Doped Fins

Powered by Insight

- No visible damage along tops or sidewalls of fins
- Regrown Si shows good crystalline quality throughout fin
- Thin (~2nm) native oxide present around fin

ion beam services

-

Powered by Insight

SIMS Depth Profiles for AsH₃ Implants

SIMS Profile of Arsenic USJ with Flash Anneal

- AsH₃, 0.3 kV, 2E14 cm⁻²
- 1200C flash anneal

SIMS Depth Profiles through AsH₃ Plasma Doped Fins

Top-to-bottom doping uniformity along sidewalls is quite good for both samples

As sidewall concentration decreased by half order of magnitude due to NFET source/drain anneal

- Much less than that for BF₃ implanted fins
- Concentration at fin tops and bottoms decreased by ~ order of magnitude

• Due to combination of diffusion into fin and substrate and outdiffusion

As tail extending to right of fin bottom is due to As diffusion into substrate

ion beam services

