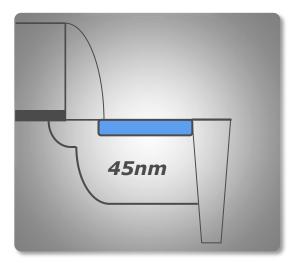
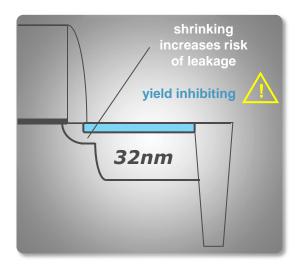


Advanced Anneal Solutions for Silicides


Shankar Muthukrishnan


RTP Anneals GPM

July 15th 2010

Challenges Scaling Nickel Silicide Contacts

- Diffusion control for thinner layer formation
- Silicide-Silicon interface morphology
- Avoiding yield limiting piping defects, especially with proximity to SDE, channel
- Sensitivity to agglomeration

Improved silicide contact is key to scaling

Integration Alternatives to Suppress NiSi Piping

- Pre amorphous implant (PAI)
- Pre clean using "flourine" dry etching
- Co implant dopant in substrate (F, C)
- Nickel alloy (Pt)
- Modifying anneals

Nickel-Silicide Process Steps

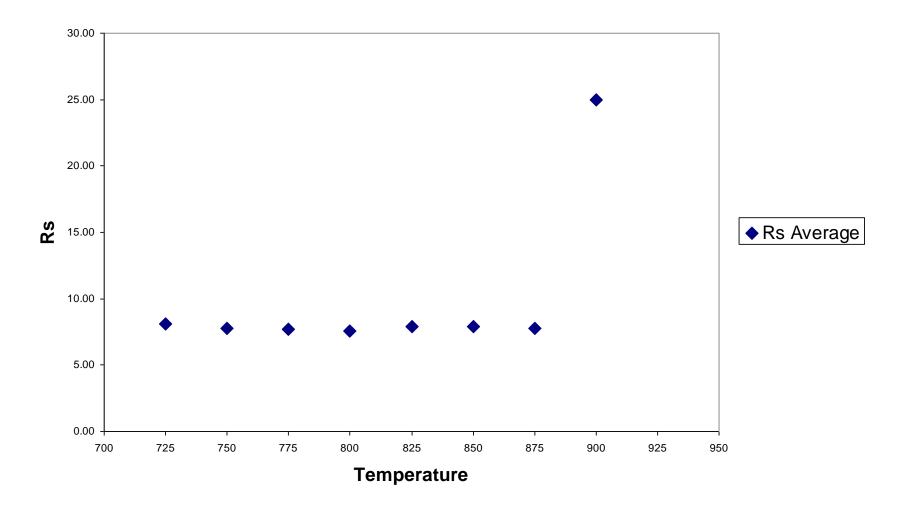
NiPt Salicide Flow:

	Traditional anneals	Advanced alternative
pre clean (native oxide removal)		
metal deposition (NiPt/TiN)		
RTP-1 anneal : Ni diffusion into Si creating Ni ₂ Si	280-300°C Soak	200-250°C Soak
non-reacted (NiPt) metal removal by selective etching		
RTP-2 anneal : transformation into low resistance NiSi	400-500°C Soak	~850°C millisecond

Soak to Millisecond Transition for Silicides

	Logic (65nm)	Logic (45nm)	Logic (32nm)
Ni Silicidation / Diffusion	Soak	Low temp Soak	Low temp Soak
NiSi Phase Transformation	Soak	Soak or Millisecond	Millisecond

Driven by

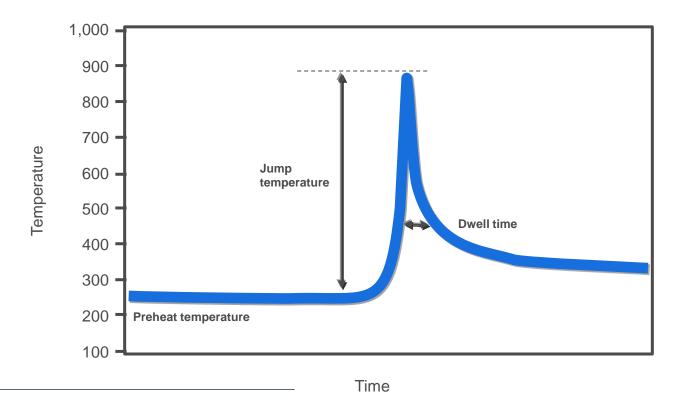

- Enabling thinner silicides without comprising conductivity or yield

Millisecond Provides

- Improved Yield performance
- Improved Junction Leakage performance
- Fewer leakage-inducing defects through steep temperature profile

Nickel Silicidation Transformation Curve

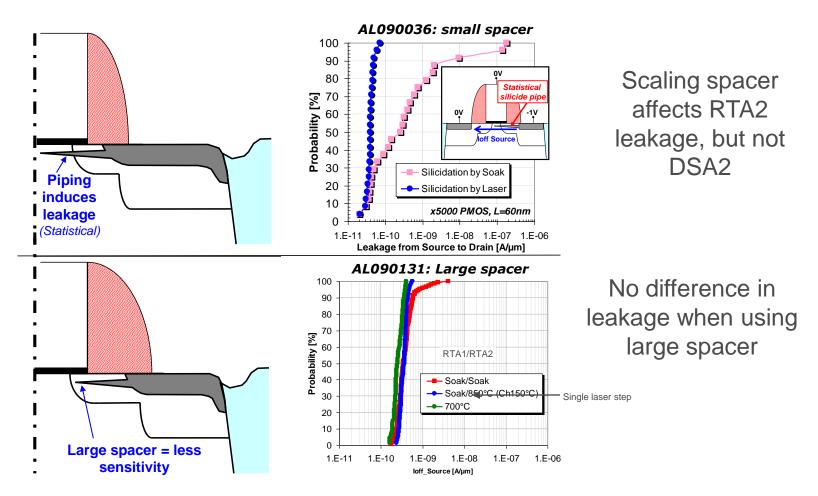
Large process window available for RTA 2


The Ideal Time-Temperature Profile for NiSi

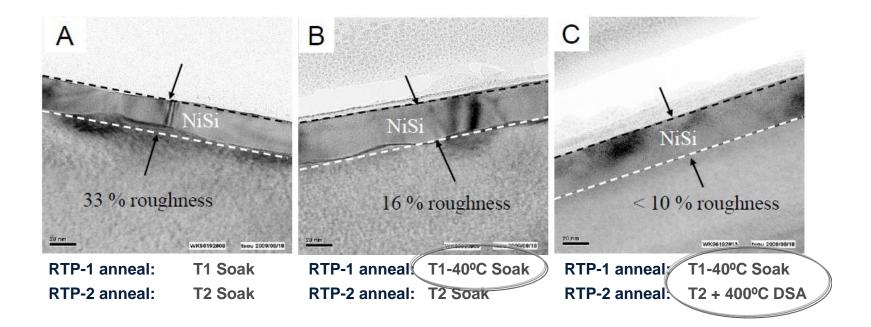
Key parameters to consider

Preheat : Must be low enough to avoid uncontrolled diffusion

Jump temp : Must be high enough to enable optimal activation w/o wafer breakage or agglomeration


Dwell time : Must be short to avoid wafer bow and breakage

Above profile is key to enabling optimal nickel silicide


Yield Results and Scaling Impact for NiSi Process

Data source : IMEC IEDM 2009

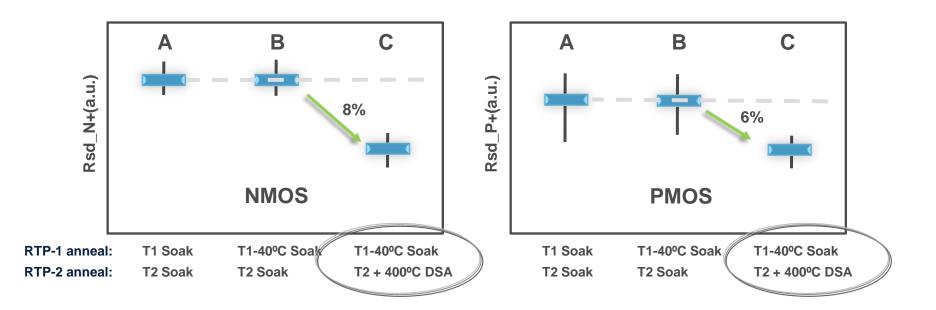
Results: NiSi Morphology Improvement

Source: IEEE - RTP2009 Conference, Advances on 32nm NiPt Salicide Process, Dr. Chen et al. Co-published by UMC / Applied Materials

Process B (lower RTP-1 Soak) roughness reduced vs process A (baseline) Process C (lower RTP-1 Soak + DSA RTP-2) achieves lowest roughness

Results: NiSi Piping Defects Reduction

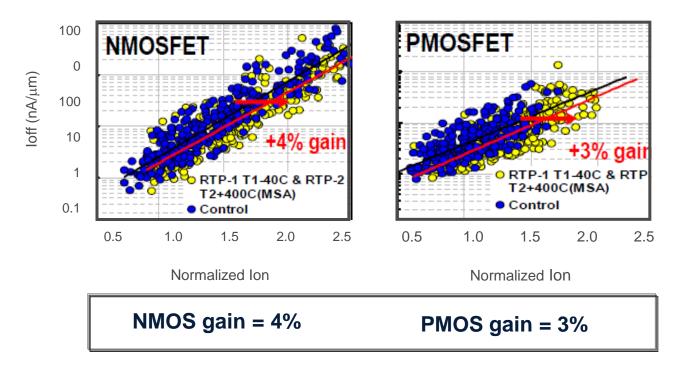
Piping Defects Count TEM Top View 100 80 Normalized Defects (%) 60% 60 Α 40 30% 20 B С 0 T1 Soak T1-40°C Soak T1-40°C Soak **RTP-1** anneal: **RTP-2** anneal: T2 Soak T2 Soak T2 + 400°C DSA


Based on e-beam Bright Voltage Contrast (BVC) measurement count on a pattern wafer, post CMP

Source: IEEE - RTP2009 Conference, Advances on 32nm NiPt Salicide Process, Dr. Chen et al. Co-published by UMC / Applied Materials

Process B (lower RTP-1 Soak) achieves lower defect count than baseline Process C (lower RTP-1 Soak + RTP-2 DSA) achieves lowest piping defect count

Results: Electrical Performance – R_{S/D}


Source: IEEE - RTP2009 Conference, *Advances on 32nm NiPt Salicide Process*, Dr. Chen et al. Co-published by UMC / Applied Materials

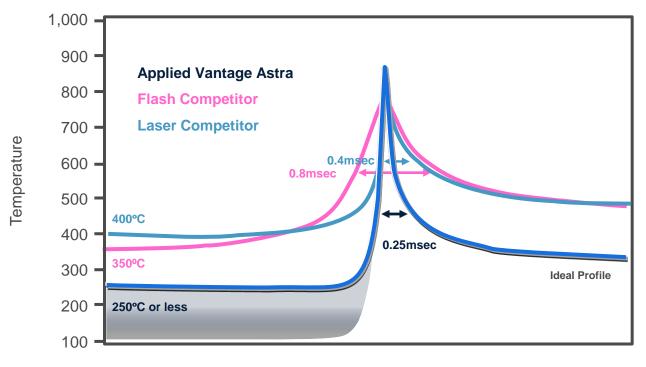
The series S/D Rs (Rsd) decreased using DSA

Results: Electrical Performance – Ion/Ioff

RTP-1: Soak @ T1-40°C RTP-2: Millisecond (T2+400°C)

Source: IEEE - RTP2009 Conference, *Advances on 32nm NiPt Salicide Process*, Dr. Chen et al. Co-published by UMC / Applied Materials

Drive current gain achieved by enhancing nickel silicide contact using millisecond annealing with low temperature RTP-1 Soak


The Ideal Time-Temperature Profile for NiSi

Key parameters to consider

Preheat : Must be low enough to avoid uncontrolled diffusion

Jump temp : Must be high enough to enable optimal activation w/o wafer breakage or agglomeration

Dwell time : Must be short to avoid wafer bow and breakage

Time

Delivered by Applied Materials' Vantage Astra system

Applied Vantage[®] Astra[™] DSA System

Uniquely powerful silicidation

- Up to 5% greater device speed
- Higher yields enabled by up to 15x lower leakage
- Less wafer stress

Versatile dynamic millisecond anneal

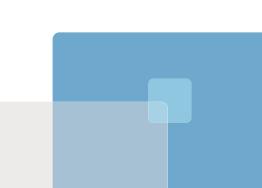
- Broad range of processing conditions
- Ambient control
- Extendible to high-k/metal gate applications

Compact, reliable, cost-effective

- Simple, compact and smart chamber design
- Solid-state laser with prolonged lifetime
- > 40 WPH per two- chamber system
- Compatible with an RTP chamber on same system as hybrid

FAST. SMART. RELIABLE. Simply Better Anneal

Vantage Astra DSA System Photos



Turning innovations into industries.™

