

Optimizing the Synergy Between Thermal Wave and Sheet Resistance Measurements for the 15nm Node Walt Johnson

Implant Monitor Solution with RS and TP

- Relative measurement, In-line on PW process control, optical micro-4PP
- High resolution, sensitive & stable
- Pre- and post- anneal
 - Decouples implant & anneal

- Absolute measurement, providing calibration for TP
- Industry standard NIST-traceable sheet resistances
- Post-anneal
 - activation

Implant & Anneal Control with Therma-Probe (TP) + Rs TP + Rs provide full implant & anneal critical process parameters

TP + Rs provide complete metrology parameters for implant & anneal process Rs for "reference" level Activation & junction electrical quality TP for implant dose and post-anneal parameters (damage recovery & Xj)

TP680 Summary of Improvements

TP680 improves DD by >2x compared to TP630XP

100

Time [sec

-3

-3.5

200

180

τw

Accelerating Yield

2010/7/15

12

13

log(Dose) [cm⁻²]

As 10

100

10

10

11

Hx probe tip design

Larger contact area results on lower penetration and lower contact resistance.

Contact area does not change through useful life.

5

confidential

TP680 vs. TP630 Comparison

SN and long term stability of TP680 is greatly improved over TP630

TP & Rs Evaluation of Laser Beam Overlap

Fig.9: MOR and 4PP diameter scan result of wafer #7

Is there any significance to the asymmetry shown in the Rs data?

TP Product Wafer Monitoring

- Integration issues are only detected on product wafers
- Process excursions are identified earlier with product wafer monitoring

Implant Uniformity Verification

Checker patterns are signatures that result from quad-mode operation of a ribbon beam implanter

Correlation Summary: NMOS & PMOS

Laser Spike Anneal Macro & Micro Non-uniformity Investigation Using Modulated Optical Reflectance

Fig.2: Thermawave full-mapping for wafer#1 (left) and wafer#2 (right).

Fig.3: Localized MOR mapping with high resolution for wafer#1 (left) and wafer#2 (right).

encor

Accelerating Yield

Mean: 7166; Range: 454; Std%: 1.1%

Mean: 7055; Range: 245; Std.%: 0.6%

Yonggen He1, Yong Chen1, Guobin Yu1, Albert Hong1, Jiong-Ping Lu1, Xianghua Liu2, Lu Yu2, Yue Chen2 (SMIC & KT)

2010/7/15

High Resolution Zoomed Imagess

Fig.7: Global (low resolution) and localized (high resolution) MOR map: (a), wafer#5 global, (b), wafer #6 global, (c) wafer #5 local, (d),wafer#6 local.

One of the More Interesting TP680 µMaps

TP680 Twice the Resolution in Half the Time

Data outside +/- 3σ from the mean are excluded from the maps

TP680 µMap and Crystal Channel Map

2010/7/15

Hx Probe Better s/n for USJ uniformity ---- Intel 22nm Node USJ Implant (~5nm X_i)

As-HALO 14keV In-PAI RsL & Hx results

22nm Node p+ USJ Formation Using PAI & HALO Implantation With Laser Annealing

John O. Borland1, John Marino2, Michael Current3 and Blake Darby4

No HALO 5 & 14keV Xe-PAI

RS200 with Hx100 Probe on 0.2 keV B with Xe PAI (no Halo)

Accelerating Yield

Hx Probe on Xe and Ge PAI Implants

RS200 with Hx100 Probe on 0.2 keV B with Xe & Ge PAI (no Halo)

to the no PAI reference. RsL results showed the opposite.

Is this real?

Study of sub-melt laser damage annealing using **Therma-Probe**

- What leakage values to trust ?? > Need for more leakage understanding
- SEMILAB/KLA seem to follow +/-similar trend
- Not always monotonic with temperature

many thanks to Walt Johnson for the last minute measurements in 💭

imec 2009 | 28

EOR damage Study

AE090326 KLA JDP	S1:Breferer	w afers	S2 : Ge/B ma										S3 : F/B Blan ref for device exp AMPT090			S4 : BF2							
VERSION V5 (28/05/09)	F02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19	D20	D21	D22	D23	T25
7001 NMON F400	х	х	х	х	х	Х	х	х	х	Х	х	х	х	х	х	х	х	х	х	Х	х	х	х
Basic Clean	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
PAI																							
3000 Ge 5KeV Q1 tw0-ti0 1.0e14/cm2			х	х																			
3000 Ge 5KeV Q1 tw0-ti0 5.0e14/cm2					х	х																	
3000 Ge 10KeV Q1 tw0-ti0 1.0e14/cm2							х	х												х	х		
3000 Ge 10KeV Q1 tw0-ti0 5.0e14/cm2									х	х												х	х
3000 Ge 20KeV Q1 tw0-ti0 1.0e14/cm2											х	Х											
3000 Ge 20KeV Q1 tw0-ti0 5.0e14/cm2													х	х									
3000 F 10KeV Q1 tw0-ti0 2.0e15/cm2															х	х	х						
LITHO																							
6400 Half-wafer Litho - Clear right-39mm	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Active implants																							
3000 B 0.5KeV Q1 tw0-ti0 5e14/cm2	х		х		х		X	Captur	e I X ao	e	Pr X t S	creen	х										\square
3000 B 0.5KeV Q1 tw0-ti0 1e15/cm2		х		х		х		x		х		х		х									
3000 B 0.5KeV Q1 tw0-ti0 7e14/cm2															х	х	х						
3000 BF2 2.2 keV (= B 0.5KeV eq.) Q1 tw0-ti0 5e14/cm2																		х		Х		х	
3000 BF2 2.2KeV (= B 0.5KeV eq.) Q1 tw0-ti0 1e15/cm2																			х		х		х
STRIP																							
7700 junction strip	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
TP post implant measurement																							
7480 TP measurement (std & tracker scans)	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
Anneal																							
2700 DSA 6 zones (1150-1300)	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
2600 spike anneal 850C																х							
2600 spike anneal 950C																	х						
TP postmeasurement																							
7480 TP measurement (std & tracker scans)	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х

Wafer Layout

Minimal Leakage with 5 keV Ge PAI

Higher Dose 10 keV Ge PAI Shows Leakage

5E14B implants

1E15B implants

Substantial Leakage with 20keV Ge PAI

Spike Substantially Reduces Leakage

RS300 Eddy Current Test on P/P Implant

Product Wafer NCRs Mapping & Line Scan

1 Sigma of dynamic 20 repeats <0.5%

Optimize Current Example 1

OC routine picked a good current.

Sensitivity of TiN Film

Wafer	slot10	slot12	slot14	slot16	slot18	slot20	slot22	slot24	slot8
TiN Thickness (A)	12	16	20	25	30	35	45	70	100
Rs (ohm/sq)	8.04E+07	1.18E+05	10201	3053	1637	1101	667	360	254
Resistivity (uΩ-cm)	9.65E+06	1.88E+04	2040	763	491	385	300	252	254

- Rs trending up quickly with TiN film thickness decrease
 - Metal resistivity will become big with thickness decrease

Long Term SPC Data for Non Contact Rs

Example TCR Curve

The maximum temperature which can be set in the system is 35 degrees C

RS200 TCR Values of NF19 and NF50 films

GRR Test Results

•10 reps of 10 pts map recipe on QC_SiH4 wafer;

•The std% of 10 reps for all 10 sites is smaller that 0.1%;

•Hx stability test meet TSMC GRR requests

Dual Probe Arm Position Accuracy

•Hx/H located on P1/P2, tested on same QC_SiH4 wafer with 17pts map recipe;
•No obvious deviation between two results;

Hx Matching Performance

•Different Hx probes reported similar Rs values on QC wafers;

•One Hx probe reported similar Rs values on different tool site;

•Probe to probe variation is smaller than 0.3%.

Probe Calibration

Using probe Calibration reduced the delta between two probes by a factor of 3.

Matching Before & After Leveling of Tips

- Improved signal to noise on provides clearer pictures of the process through the Micromap feature.
- Larger signal makes possible post anneal measurements on the TP680.
- In many cases a good correlation to 4PP Rs can be obtained with the TP680.
- The Hx probe for the RS200 systems minimizes leakage effects allows measurements of implants down to 5nm Xj.

