PULSION® HP: Tunable, High Productivity Plasma Doping

S.B. Felch, F. Torregrosa, H. Etienne, Y. Spiegel, L. Roux, and D. Turnbaugh

Ion Beam Services, Peynier, France

IIT 2010, Kyoto, Japan, June 10, 2010
Introduction

- Plasma doping in R&D for over 2 decades
 - Ultra-shallow junctions
 - Conformal doping of trenches and fins
- In production today for two very high dose, DRAM applications
 - Polysilicon gate counter-doping
 - Contact doping
- Parasitic effects due to reactive plasma at wafer surface
 - Etching of surface materials
 - Enhanced oxidation
 - Deposition of films
- Key features of PULSION® HP
 - Dual Region Chamber© design that enables a high density plasma with low chamber pressure
 - Minimizes undesired side effects
 - Enables wide process space
 - Low gas flow rates
 - Special chamber and wafer electrode designs that optimize doping uniformity
Unique Features of PULSION HP®

- Continuous or pulsed plasma
- High Pressure, very high density plasma: Remote ICP plasma source
- Dual Region Chamber Design (DRC)
- Low Pressure, high density plasma
- Rotating chuck for better uniformity
- Adjustable Wafer/Source Offset
- Plasma Sheath
- Features to Improve Uniformity
- Longer distance to improve homogeneity

- ON
- OFF

- O
- HV
Independent Tuning of BF$_3$ Plasma Density and Chamber Pressure

- Adjustable pressure differential of \(\leq 2 \) orders of magnitude between plasma source and process chamber
- Plasma source RF power is primary control of plasma creation and density and implant current
- Chamber pressure can be independently varied to achieve desired chemistry effects at the wafer surface
Conformal Doping with Boron Plasma Implant

- Conformal doping of 3D structures requires dominance of deposition and implant
- Equal thicknesses of all doped regions
- Actual doping of fin Si, since no change in fin dimensions
- No evidence of corner rounding or fin erosion
DRAM contact doping requires implantation with balance of minimal etching, sputtering, and deposition

Can vary B surface concentration and implanted dose while keeping junction depth constant - ideal to reduce contact resistance

See Poster P2-41
BF₃ Dose Response for Typical Poly Counter-Doping

- As dose increases, all points in SIMS profile increase
- Different behavior than B₂H₆

See Poster P2-41
Minimal Si Etching: HRTEM Implanted / Unimplanted Samples

BF$_3$ 4kV, 1.5E16 atoms/cm2

Unimplanted

Implanted

Si (15 nm)

SiN (4 nm)

Si Substrate

Implanted structure

+-1 nm Oxide Growth

See Poster P1-33
SIMS Profiles: Voltage Response for BF$_3$

- Implant depth control proportional to wafer voltage
- USJ depths below 10nm can be achieved by reducing the wafer voltage
PULSION® n-Type Doping
Shallow Implant Depth Capability

PULSION AsH$_3$ As-Implanted profiles

- As 1keV 2×10^{15}/cm2
- As 3keV 4×10^{15}/cm2

concentration (at/cm3) vs. depth (nm)
Arsenic USJ with Flash Anneal

- 300 V As, 2E14 cm\(^{-2}\)
- 1200C flash anneal

![Graphs showing arsenic concentration and silicon counts versus depth](image-url)
PULSION® HP Uniformity Advantages

- Tall chamber design
 - Longer distance between source and wafer
 - Improves uniformity of plasma flow
- Adjustable wafer/plasma source offset
- Rotating wafer
 - Enhances implant uniformity at wafer level
R_s Uniformity and Repeatability

<table>
<thead>
<tr>
<th>Mean Rs (ohms/sq.)</th>
<th>Uniformity ($%$, 1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.55</td>
<td>0.828</td>
</tr>
<tr>
<td>161.19</td>
<td>0.780</td>
</tr>
<tr>
<td>160.17</td>
<td>0.787</td>
</tr>
<tr>
<td>157.96</td>
<td>0.777</td>
</tr>
<tr>
<td>158.66</td>
<td>0.840</td>
</tr>
</tbody>
</table>

PULSION Repeatability Test

- Uniformity (1σ) < 1%
- Repeatability (1 sigma) = 1.16%

- Typical poly counter-doping process
 - BF$_3$, 6.5 kV, 7E16 cm$^{-2}$
 - HF strip before anneal
 - 1000C, 10 sec anneal
PULSION HP® – Max 4 Chambers, >100 WPH (Poly Counter-Doping)
Summary

- Dual Region Chamber® design of PULSION HP® enables a high density plasma with variable, low chamber pressure
 - Allows customer choice of dominant process mechanism: deposition, implant, or etch
 - Minimizes undesired side effects
- Special chamber and wafer electrode designs
 - Optimized doping uniformity
 - Wide process space
- High wafer throughputs necessary for high-volume production
 - High plasma density
 - Platform with up to four plasma doping chambers