PULSION® HP: Tunable, High Productivity Plasma Doping

S.B. Felch, F. Torregrosa, H. Etienne, Y. Spiegel, L. Roux, and D. Turnbaugh

Ion Beam Services, Peynier, France

IIT 2010, Kyoto, Japan, June 10, 2010

Introduction

- Plasma doping in R&D for over 2 decades
 - Ultra-shallow junctions
 - Conformal doping of trenches and fins
- In production today for two very high dose, DRAM applications
 - Polysilicon gate counter-doping
 - Contact doping
- Parasitic effects due to reactive plasma at wafer surface
 - Etching of surface materials
 - Enhanced oxidation
 - Deposition of films
- Key features of PULSION® HP
 - Dual Region Chamber[©] design that enables a high density plasma with low chamber pressure
 - Minimizes undesired side effects
 - Enables wide process space
 - Low gas flow rates
 - Special chamber and wafer electrode designs that optimize doping uniformity

Unique Features of PULSION HP®

Independent Tuning of BF₃ Plasma Density and Chamber Pressure

- Adjustable pressure differential of ≤ 2 orders of magnitude between plasma source and process chamber
 - Plasma source RF power is primary control of plasma creation and density and implant current
 - Chamber pressure can be independently varied to achieve desired chemistry effects at the wafer surface

Conformal Doping with Boron Plasma Implant

- Conformal doping of 3D structures requires dominance of deposition and implant
- Equal thicknesses of all doped regions
- Actual doping of fin Si, since no change in fin dimensions
- No evidence of corner rounding or fin erosion

Minimal B Deposition: SIMS Dose Response for 3kV B₂H₆

- DRAM contact doping requires implantation with balance of minimal etching, sputtering, and deposition
- Can vary B surface concentration and implanted dose while keeping junction depth constant - ideal to reduce contact resistance

BF₃ Dose Response for Typical Poly Counter-Doping

- As dose increases, all points in SIMS profile increase
- Different behavior than B₂H₆

Minimal Si Etching: HRTEM Implanted / Unimplanted Samples

BF₃ 4kV, 1.5E16 atoms/cm²

Unimplanted

Implanted

SIMS Profiles: Voltage Response for BF₃

- Implant depth control proportional to wafer voltage
- USJ depths below 10nm can be achieved by reducing the wafer voltage

PULSION® n-Type Doping Shallow Implant Depth Capability

PULSION AsH₃ As-Implanted profiles

Arsenic USJ with Flash Anneal

- 300 V As, 2E14 cm⁻²
- 1200C flash anneal

PULSION® HP Uniformity Advantages

- Tall chamber design
 - Longer distance between source and wafer
 - Improves uniformity of plasma flow
- Adjustable wafer/plasma source offset
- Rotating wafer
 - Enhances implant uniformity at wafer level

R_s Uniformity and Repeatability

Mean Rs (ohms/sq.)	Uniformity (%, 1σ)
162.55	0.828
161.19	0.780
160.17	0.787
157.96	0.777
158.66	0.840

PULSION Repeatability Test

- Uniformity $(1\sigma) < 1\%$
- Repeatability (1 sigma) = 1.16%
- Typical poly counter-doping process
 - BF₃, 6.5 kV, 7E16 cm⁻²
 - · HF strip before anneal
 - 1000C, 10 sec anneal

PULSION HP® – Max 4 Chambers, >100 WPH (Poly

Counter-Doping)

Summary

- Dual Region Chamber[©] design of PULSION HP[®] enables a high density plasma with variable, low chamber pressure
 - Allows customer choice of dominant process mechanism: deposition, implant, or etch
 - Minimizes undesired side effects
- Special chamber and wafer electrode designs
 - Optimized doping uniformity
 - Wide process space
- High wafer throughputs necessary for high-volume production
 - High plasma density
 - Platform with up to four plasma doping chambers

