

The Cluster Implant Source

ClusterBoron technology for <10nm junctions

Wade Krull

Semicon West '09 WCJUG

© 2009 SemEquip, Inc.

Challenges for 10nm junctions

- Boron implant, 250-300eV
 - Channeling
 - Energy Contamination
 - Amorphization
- Diffusion during annealing
- Dopant Activation and sheet resistance
- Characterization
- Process Integration

ClusterBoron Dimer Technology

- ClusterIon source with ClusterBoron (B18H22) feed material produces ClusterBoron-Dimer (B36Hx) ion beam
- Dimer production by ion source is less than the B18 primary beam, but transport conditions produce dose rate advantage for the dimer at low energy (<400eV)
- B36 Process Evaluation
 - Amorphization
 - Depth Profile
 - Activation

June 2009 — IWJT 2009

Self-amorphization SemEquip June 2009 – IWJT 2009 4 The Cluster Implant Source eradyne company

B₁₈**H**₂₂ and Dimer **B**₁₈**H**₂₂ (**B**₃₆**H**_x) 300eV@1e15

The Cluster Implant Source

SemEquip

😅 a ceredyne company

XTEM $B_{18}H_{22}$ and $B_{36}H_x - 300eV@1e15$ 100 **B36 - 300eV** Amorphous Layer Thickness (nm) 90 ●B18 - 300eV 80 ▲ B18 - 500eV 70 60 50 40 30 20 10 0 1.0E+14 1.0E+15 1.0E+16 Implant Dose (atoms/cm²) Amorphization threshold is lower with B_{36} compared to B_{18} even for $E_{B36} < E_{B18}$ SemEquip June 2009 – IWJT 2009 The Cluster Implant Source

E a caradyne company

8

SIMS Profiles (Xj)

June 2009 — IWJT 2009

9

B₁₈ vs **B**₃₆ – 300eV @ 7.5e14 atoms/cm²

💳 a ceredyne company

SIMS profile for B_{36} is slightly deeper than B_{18} . At a boron concentration of 5e18 atoms/cm³, the difference in Xj between B_{18} and B_{36} is around 5Å.

B₁₈**H**₂₂ & **B**₃₆**H**_x @ 300eV _1e15 HDR & PCOR protocol

SIMS profile for HDR protocol is shallower than PCOR protocol. At concentration of 1e18, the

difference in Xj is about 4nm.

SemEquip The Cluster Implant Source

😅 a ceredyne company

B₃₆H_x at 300eV – Dose Sequence SIMS Profile PCOR

💳 a ceredyne company

Percentage of implanted Boron within α -Si layer : B₁₈- 300eV @ 1e15

About 30% more boron is present in the α -Si for a difference of 20Å thickness in α -Si (40Å and 60Å).

E a caradyne company

C₁₆ co-implant @ 1e15 atoms/cm² α-Si thickness

Provides a guidance to chose an energy and dose to obtain a given α -Si thickness

😅 a caradyne company

Retained dose vs. screen/native oxide

Simulation via Marlowe

□From Krull, et al, IIT 1998

Oxide (A)	1000eV	500eV	250eV
10	0.91	0.80	0.66
20	0.82	0.62	0.31
30	0.68	0.38	0.09

Millisecond anneal (Flash and Laser)

June 2009 – IWJT 2009

16

Rs and Xj Results

B₃₆**H**_x – 300eV, 2.3e15 atoms/cm²

Dimer B ₁₈ H ₂₂ - 300eV, 2.33e15 atoms/cm ²				
Excico Laser Anneal				
Sample	Rs	Xj at 5e18 (PCOR)	SIMS dose	
	(Ohm/sq)	(nm)	(atoms/cm ²)	
as-imp	X	15.2	2.33E+15	
1P_1.4J/cm ²	1110	15.4	2.31E+15	
5P_1.4J/cm ²	955	15.2	2.30E+15	
10P_1.4J/cm ²	887	15.4	2.29E+15	

Good Rs number is obtained for a laser energy density for 10P 1.4 J/cm² · Practically there is no change in Xj values. Higher number of pulses increases boron activation.

SemEau

E a caradyne company

Rs & Xj Results : B₃₆H_x – 300eV, 2.33e15 atoms/cm² Excico Laser Anneal

a ceradyne company

B₃₆H_x – 300eV, 2.33e15 atoms/cm² Excico Laser Anneal

😅 a caradyne company

Practically no change in Xj after anneal at 5e18 atoms/cm³.

$B_{36}H_x - 300eV, 2.33e15 \text{ atoms/cm}^2$ **Excico Laser Anneal**

E a ceredyne company

20

B₃₆ vs B₁₈ – 300eV, 1.0e15 atoms/cm² Flash Anneal

 B_{36} is better than B_{18} by 15 – 20%. Possible explanation could be due to the higher amorphous layer thickness from B_{36} implant.

The Cluster Implant Source

SemEquip

😑 a caradyna company

SRIM simulation Boron Xj below 10nm

By choosing the right dose and energy Xj less than 10nm could be easily realized either with B_{18} or Dimer B_{18} .

The Cluster Implant Source

SemEquip

😑 a ceradyne company

Summary

ClusterBoron (especially heavier B₃₆ species) is a good candidate for very ultra-low energy implants beyond 32nm technology nodes.

- Shallow and abrupt junctions
- Low Rs and contact resistance with no crystal regrowth defects
- Throughput advantage at low energies with added process advantage
- > B_{18} and B_{36} are good candidates where junctions less than 10nm are required.

Acknowledgments

We thank

Mattson Technology Group Canada and

Excimer Laser Inc, France

Evans Analytical Group

