The 4PP: Obsolete or Timeless

Walt Johnson
KLA-Tencor
Short History of the 4PP

- 1978 Tencor introduces the M-gage
 - Replaced my +/- 10% Veeco 4PP with an M-Gage (4PP obsolete?)
- 1983 Prometrix Introduces dual configuration +/-1%
 - Bought an OmniMap
- 1985 Prometrix reviews future
 - Management decides 4PP has 2 yrs life
- 1994 Prometrix merges with Tencor
 - Tencor management drops M-Gage, decides 4PP has 2 more yrs
- 1997 Tencor merges with KLA
 - KLA management decides the 4PP has 2 more years
The Status of the 4PP

- So where do we stand today?
Markets addressed by the 4PP

- Metals
 - Metal sheet resistance
 - Metal thickness assuming a given resistivity
 - Metal resistivity assuming a given thickness

- Ion Implant
 - Dose monitoring (post anneal assuming a given anneal level)
 - Ion activation (post anneal assuming a given dose level)
NCRs (eddy current) Replaces 4PP for metals
(at least for thick metals on high resistance substrates)
Copper Removal Correlation

- Overall correlation between 4PP and NCRs (on multiple wafer sets)

\[y = 0.9874x \]

\[R^2 = 0.9987 \]
New Eddy Current Probe Development
(Patent pending)

- The direction of eddy current by current probe is parallel to film surface and less sensitive to via sidewall coverage
- The direction of eddy current by new probe is perpendicular to film surface which should have better sensitivity
Eddy Current Signal on Unfilled & Filled Via

- Filled and unfilled via shall show difference in eddy current signal

![Diagram showing eddy current on unfilled and filled TSVs](image-url)

- Unfilled TSV
- Filled TSV
Y-direction Diameter Scan (in arrow direction)

- Peak area correlates to via coverage
 - Repeated via peaks super-imposed on the global Rs non-uniform distribution
Rs Peak Area Calculation Algorithm

- Rs peak area correlates to via coverage
Hi Density Rs Measurement in Die (Slot 4)

Depending on if Rs variations are of interest, recipe set up will need to be used to either measure those areas or avoid them.
Improved USJ Measurements with Hx probes
Conventional Four-Point Probe results on 0.5 keV Boron USJ

4PP provides sensitivity for process development & monitoring to detect small temperature fluctuations.

Customer “A” data
Discovering Annealer Problems on a 0.5 keV B+ implant

- High variations toward upper left edge of wafer
 - 14 points in area show measurement error or data outside sigma filter
- Center ring possibly due to thermocouple from annealer
- Three higher Rs regions around center possibly due to pedestal in annealer
- Excellent matching between probe heads, and results repeatability

Yield-limiting detail analysis of Anneal process equipment

Customer “C” data
Long-Term Repeatability

Repeatability of Contour Map Results:

<table>
<thead>
<tr>
<th></th>
<th>BF2 1.5E14, 8 KEV 25 repeats</th>
<th>BF2 1E14, 5 KEV 25 repeats</th>
<th>As 1E14, 5 KEV 25 repeats</th>
<th>As 1E14, 3 KEV 25 repeats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1451</td>
<td>2508</td>
<td>1252</td>
<td>1613</td>
</tr>
<tr>
<td>% Stdev</td>
<td>0.16%</td>
<td>0.21%</td>
<td>0.14%</td>
<td>0.12%</td>
</tr>
</tbody>
</table>

Repeatability on BF2 and Arsenic USJ implant maps is excellent
Alternate Implant Monitoring Techniques

- IonScan
- Metrix e-beam
- TW
- SemiLab / FSM / Quantox (KLA-Tencor)
- Microwave?
TP to Rs Comparison

- Another example of laser anneal optimization with TP including comparison with Rs
Junction Leakage Limits 4PP Usage

Hx Four-point Probe Data

Sheet Resistance (Ohm/sq.)

1E15 B, 100 eV

1E15 BF2, 500 eV

1175C

1225C

1275C

1325C

1E15 B, 100 eV

1E15 BF2, 500 eV

No PAI

Ge PAI

Xe PAI

Slot #
SPV, JPV or LPV

Correlation of RsL & QTX Lifetime

Quantox SPV Decay
The 4PP leakage through substrate can be modeled by following equivalent circuit.

When $I_{\text{leakage}} \ll I_{\text{el}}$, the distribution of the measured potential is determined only by the current going through top layer with sheet resistance R_s

$$V(x, y) = \frac{I_{EL} R_s}{2\pi} \ln \left(\frac{(x - x_1)^2 + (y - y_1)^2}{(x - x_2)^2 + (y - y_2)^2} \right)$$

Where I_{el} is the current, which flows through the probes 1 and 4 with coordinates (x_1, y_1) and (x_2, y_2) on the other. Approximately consider half of the area as forward bias diode, the other half as reverse biased diode.
4PP Method (for leakage)

Measured Rs is a function of applied current for a fixed diode leakage density

\[I_{LEAK} = \iint_S j(x, y) \, dx \, dy = I_0 \iint_S \left[\frac{\sqrt{(x-x_1)^2 + (y-y_1)^2}}{\sqrt{(x-x_2)^2 + (y-y_2)^2}} \exp \left(\frac{-q \cdot I_{EL} \cdot Rs}{2\pi k T} \right) - 1 \right] \, dx \, dy \]

\[Rs_{measured} = \frac{\pi \cdot V_m}{\ln 2 \cdot I_{EL}} \]

where

\[V_m = \frac{\ln 2}{\pi} (I_{EL} - I_{Leak}) Rs \]
Increased Leakage below 1275° Anneal
Current Ramp Comparison to SPV

Correlation of RsL & QTX Lifetime

Quantox SPV Decay

Correlation of Rs slope & Lifetime
Present Status of the 4PP

New (and older) technologies eddy current, TW, SPV etc. adding information on traditional 4PP applications

BUT!!!

4PP
Still not ready to give up