

Implant Process Characterization With Modern In-line Metrologies

July 16, 2009 Junction Technology Group, Semicon West 2009 Program

- Introduction to Semilab
- Implant metrology
 - Dose
 - Implant depth
 - Junction depth
 - Sheet resistance
 - Doping profiles
 - Activated surface dopant density
- Will illustrate techniques that provide above parameters
- Summary

(9) SEMILAB Semilab Background

- We have brought several powerful techniques into the Semilab family
- We offer multiple products for monitoring the implant/anneal processes
- The specific customer needs will determine the best fit.

SEMILAB The Ion Implant Process

- Deposit photo-resist
- Expose / develop
- Perform blanket implant on product wafers and often monitor wafers also
- Measure implant dose, depth
- Anneal, to activate dopant
- Measure sheet resistance, junction depth, activation, profiles

SEMILAB Monitoring Before Anneal

- Provides SPC monitoring of implanters and implantation process
 - Real-time monitoring, immediate feedback
- Measures
 - Dose
 - Implant Depth
- Assumes damage = f(dose)

Q SEMILAB Monitoring After Anneal

- The dopant species is activated by the anneal
- The *activated dopant* affects device performance
- Measure
 - Sheet resistance
 - Junction depth
 - Profiles

(P) **SEMILAB Obsolete or Timeless?**

- Before anneal
 - Therma-Wave (traditional approach)
 - Measures in TW units, dependent on energy and dose
 - Actually measures the damage caused by the implant process
- After anneal
 - 4-Point Probe
 - Measures sheet resistance (ohms/square)

QCS ICT-300

Non-Contact Fast Mapping Metrology

SEMILAB

Based on ac-SPV Method

- ✓ Both as-implanted and annealed wafers
- ✓ Energy range: 0.5keV to 3.0MeV
- ✓ Dose range: 1E10cm⁻² to 5E15cm⁻²
- ✓ All common species: B, P, As, BF₂,F, He, In, etc.
- ✓ Repeatability: < 1% (for low/medium dose < 0.5%)</p>

What is Measured?

Implanted Silicon

Implant dose, energy, angle

$$V_{SPV} = \frac{I_{eh}kT}{q^2 n_i} \frac{1}{\gamma N_d \Delta R}$$

 N_d – implant induced defect density

 ΔR -- implant region width

 γ -- capture probability

Annealed Silicon

Average doping density

$$V_{SPV} \propto \frac{1}{\omega} I_{eh} \left(\frac{kT \ln (N_{sc} / n_i)}{qN_{sc}} \right)^{1/2}$$

 $f N_{SC}$ – doping concentration $f I_{eh}$ – light intensity ω -- light modulation frequency

ICT-300 Implant Monitoring Capabilities

Implanter Micro-Uniformity Detection

SEMILAB

Implant system A B 5keV 1E15

Implant system B

P 45keV 8E14

Implant system C As 3keV 4E15

Multi-Implanter SPC: B 31keV 8e12

Implant system D B 5keV 1E15

Implant system E B 2keV 3E15

Implant system F B 0.65keV 1E15

Correlation to Final Electric Test

Implant: As⁷⁵ 2e12 cm⁻² 300keV

as-implanted

SEMILAB SDI measurement technique and V_{sb} corrections

$$NSD = N_A = \frac{2 (Vsb - \frac{kT}{q})}{q \cdot \varepsilon} \cdot C_D^{2}$$

COCOS (ref. Wilson [1])

$$V_{CPD}(dark) = V_{OX} + V_{sb}(+const)$$

 $V_{CPD}(light) = V_{OX}(+const)$
 $V_{sb} = V_{CPD}(dark) - V_{CPD}(light)$

ac-SPV (ref. Nakhmanson [2])

$$C_{D} = \frac{const \cdot Ieff}{\varpi \cdot V_{SPV}}$$

M. Wilson et al., ASTM STP 1382, (1999)
R. Nakhmanson, Solid State Electron. 18, 617 (1975)

Slide 090716001

Measurement depth = Space Charge Region depth W

Calibration: NSD versus surface barrier, V_{SB} , dependence is measured and implant specific calibration is introduced.

 \rightarrow Measured data corrected for variations in surface barrier, V_{SB}.

11

SEMILAB NSD Ion implant measurement data

Outstanding measurement Precision (P/T)

25keV P implant – correlation vs dose

Includes full wafer mapping capability

500keV P implant Dose: 5E12 (0, 0) angle

- NSD provides excellent day-to-day stability and P/T capability, accounting for variations of wafer surface state.
- Dose measurement range : 1x10¹⁰ to 1x10¹⁴ cm⁻²; plus higher doses with junction
- Software automatically corrects for light reflectivity due to oxide films.

Y SEMILAB MBIR USJ Data Analysis

- Refractive index of the doped layer was calculated using Drude model, and rectangular profile of the concentration.
- Model fit was performed with three varied parameters: doped layer thickness, activated carrier concentration and carrier mobility.
- ♦ Wavenumber range used : 600-7000 cm⁻¹.

SEMILAB MBIR Correlation With Reference Methods

Sheet Resistance

• MBIR $1/R_s$ is calculated as the product of the mobility μ and activated dopant dose (times the electron charge): • $1/R_s$ =e μ Dose

Doped Layer Thickness

Activated Dopant Dose

SEMILAB Principle of JPV Sheet Resistance Measurements

- Junction Photovoltage-based sheet resistance measurement: a method for non-contact implant monitoring with high-resolution mapping capability.
- Basic principle:
 - e⁻ and hole generation by chopped LED light
 - This causes change in junction voltage
 - Change spreads laterally, and the attenuation depends on sheet resistance
 - Change of the potential is picked up by capacitive sensors
 - Signal depends strongly on LED chopping frequency (f)
 - $R_{s'} C_d$ and $R_d (J_{leak})$ are calculated by fitting the theoretical JPV signal

SEMILAB JPV Sheet Resistance Measurements

Applications and specifications

- Implant process control (R_s depends on dose and energy) on various implant types: USJ, deep implant, pocket implant, plasma immersion implant, etc.
- Dose range: >5E11cm⁻²
- Species: B, P, As, BF₂, etc.

Sheet Resistance and Leakage Current Mapping

- Visualization of non-uniformities, implanter errors (striping, etc.) which are not detectable by low resolution methods
- Detects variations and inhomogeneities smaller than 1 % of the wafer average
- Works on oxidized and non-oxidized wafers

SEMILAB Principle of Carrier Illumination Technology

Carrier Illumination Technology

SEMILAB **Contact Probing Metrology**

SEMILAB Contact Probing Metrology

Case Study-furnace issue

PID CV curve comparison of three oxidation furnaces.

A clear distinction between

furnace 403,404 and 406 can be seen.

Furnace 406 shows a clear increase in carrier density

by about 50% close to the surface.

Expected Activation: Nsurf

SOI

*Ref: John Borland, 2006 ©2009 Semilab ALL RIGHTS RESERVED **SEMILAB** Ion Implant Matrix-Sensitivity

Slide 090716001

©2009 Semilab ALL RIGHTS RESERVED

Ion Implant Metrology Range

22

SEMILAB Case Study-AVS Insight '09

- We have brought several powerful techniques into the Semilab family
- We offer multiple products for monitoring the implant/anneal processes
- We look forward to discussion of your needs to find the best fit.