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Stress in Transistors in Production
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• Mechanical strength of Si is ~5 GPa

• Defect formation happens much earlier

– Depends on impurities like oxygen

– Depends on thermal history

• Some stresses are more damaging than 

others, like shear stress in a dislocation 

slip plane

• Tensile stress is worse than compressive

How Much Stress Is Too Much?



15

Stress in Transistors in Production

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1990 1995 2000 2005 2010

S
tr

e
s
s
, 

G
P

a

Year

Channel stress

Max residual stresss

Peak stress



16

Numonyx: STI-Induced Dislocations

Polignano et al, TED’07
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eSiGe eSiGe

cCESL

Stress-Induced Dislocations



18

Outline



19

Junction Leakage vs Bandgap

J/Jref = exp(ΔEg/2kT) 

Thermal generation-recombination current exponentially

decreases with band gap increase:

The band gap in turn depends on stress and impurities like Ge
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Band Structure vs Stress (Simplified)
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Bandgap vs Stress
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Example: S/D Junction Inside 20% SiGe

• Compressive stress shrinks Eg by 90mV

• 20% germanium adds another 80mV

• Total band gap narrowing is 80mV + 90mV 

= 170mV

• This increases junction leakage by ~30x
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Stress Impact on Junction Leakage
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Junction Leakage: Typical Observation

What happened?
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Junction Leakage: Typical Observation
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Junction Leakage: Typical Observation
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Junction Leakage: Alternative Behavior

What happened?
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Junction Leakage: Alternative Behavior

What happened?
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Harmful Stress and Defects
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Safe Dislocations

 

TEM image of a 50nm SOI 

transistor from AMD Athlon 64 

2700 chip, showing harmless 

dislocations under the spacers 

Source: Chipworks
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Safe Dislocations

 

TEM image of a 42nm tran-

sistor from Intel’s Presler chip, 

showing harmless dislocations 

under the spacers 

Source: Chipworks
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Safe Dislocations

 

TEM image of a 55nm transis-

tor from Matsushita’s DVD SOC 

chip, showing dislocations under 

the silicide that are apparently 

harmless

Source: Chipworks
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3D Stress Modeling for Typical W’s

2D is not enough.

All typical Xtors

require 3D

Moroz et al, Solid State Technology’04
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2 Inverters in Different Neighborhoods
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Stress-Induced Mobility Variation (%)

Things to notice:

•pMOS difference 17%

•nMOS difference 9%

•nMOS/pMOS ratio 

difference 26%

Mobility change

-27

+3

-18

-14

Stand-alone Dense n’hood
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The Importance of Neighborhood

Introduction of eSiGe S/D:

• Improves hole mobility

• Reverses the trend

• Still exhibits layout sensitivity-44%

-9%

+17%

Increased harmful compressive 

STI stress

Increased beneficial 

compressive STI stress

Beneficial strong compressive 

SiGe stress is partially relaxed 

by relatively soft STI



39

Competition of Two Ring Oscillators
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The ring oscillator in dense layout neighbor-

hood outruns the one in sparse layout by >10%

Moroz et al, ISQED’06



40

Outline



41

Non-Si Materials

• Qualitatively, the impact of stress on non-silicon semiconductors is 

similar to silicon.

• One important difference is that silicon is the most rigid of 

semiconductors of interest. That means that the same applied force 

leads to the larger strain in non-silicon semiconductors compared to 

silicon. For example, silicon has Youngs modulus of 165 GPa, 

whereas GaAs has Youngs modulus of only 85 GPa. The same 

stress corresponds to twice as big of a strain in GaAs compared to 

Si.

• The reason this is important is that it is strain that determines the 

band structure of a semiconductor.

• The flip side of the lower Youngs modulus is that the material is not 

as strong and suffers from defects and cracks at a lower stress 

level.
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Conclusions
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The Upcoming Book

These and other related effects are

described in the book coming out

on October 17, 2008


