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Outline

* Millisecond annealing
— Optical effects
— Heat transfer
— Stress induced by thermal gradients
— Stability of source/drain resistance
— Defect annealing for S/D and halo implants

* Layout-induced V; and L _ variations
— Threshold and L 4 shifts are driven by TED
— Non-trivial shape of diffusion mask
— Compact model for fast analysis
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Millisecond annealing
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— Heat transfer
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Optical Generation Pattern @L=32nm
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Optical Generation vs Poly Pitch @32nm

Poly gates act as lenses, with the light pattern
determined by transistor placement
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Time Averaged Heat Generation @32nm

100 nm poly spacing 500 nm poly spacing

87% heat absorption 84% heat absorption
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Time Averaged Heat Generation @32nm

100 nm poly spacing 500 nm poly spacing

Quite
similar
integral

heat

87% heat absorption 84% heat absorption
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Heat Generation vs Poly Width

Same 500 nm poly spacing
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Heat Generation vs Poly Width

Same 500 nm poly spacing
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Detailed Poly Spacing Trends
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Heat Transfer Within the Wafer

« Heat transfer within the wafer is very fast,
advancing >100 um/ms

* Therefore, layout patterns <100 um get
uniform temperature, with AT <1 °C/um

 The issue can be large areas of layout
with significantly different heat absorption

* This can be resolved by using a heat
absorption layer or appropriate dummy fill
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Typical Temperature Distribution

1300°C
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In ms-timeframe, feature scale T variations are < 1°C
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Stress Induced by Temperature Gradient

Hot top layer is
trying to expand

Most of the wafer
is cool -> shrank
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Compressive stress
is expected at the
top of Si wafer
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Stress Induced by T Gradient + Pattern

Si-dominant pattern

—

0.2 GPa compressive

Depending on local
layout, thermal

STIl-dominant pattern expansion stress

changes sign!

0.2 GPa compr. “W’R 0.5 GPa tensile

Semicon West 2008

SYNOPSYS'

14 Predictable Success




Thermal Budget to Dissolve Damage

A Eaglesham ,
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Annealing Implant Damage

* When ms anneal is used w/o spike or with
sub-1000 °C spike, it does not anneal
implant damage from higher E implants

 The residual damage backfires by
deactivating S/D dopants or by provoking
junction leakage

* One solution is to use multiple ms scans

 Another —to trap I’s using C, F, or N
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Several Laser Scans Stabilize S/D Rs

105 cm2 Ge* @5 keV
10> cm2 B* @500 eV
1150°C laser scan(s)
1 minute anneal

Residual defecis deactivaie

16009 L scan: meas boren by creating BICs in

| . . (5] o
1400 B 10 scans: meas. 700°C to 900°C T range
1200 1 —1 scan: sim.

Sheet Resistance, Q/sq.
oo
o
o

—10 scans: sim.

Ten laser scans completely
anneal implant damage and
stabilize boron Rs

Measured data from
J. Sharp et al, MRS 2006

Annealing Temperature, °C
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Halo Implant with Millisecond Anneal

* For halo implant, deactivation/clustering is
not an issue because of the lower dopant
concentration

 What is important are residual extended
defects that might survive due to higher
implant energy -> deeper

 The residual defects introduce energy levels
in the bandgap -> junction leakage
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Halo Implant with C* and Laser
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Halo Implant w/o C* with Laser

5 scans make it
~60x worse,
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Outline

* Layout-induced V; and L _ variations
— Threshold and L 4 shifts are driven by TED
— Non-trivial shape of diffusion mask
— Compact model for fast analysis
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Layout Impact on Threshold Voltage

Sony at VLSI 2007:

&0 [ ] —
O Vih 15 ]
50 ||~ Vibh_sim. - A
— O owrlaplength| | Gate-STI 11 oA
T 40 g
= measured o &
5 30 0 E,"-'
~ {12
g 20 3 e
3 :> = -
10 o -2 2 : .
w . e
0 3 s Fig. 4 Simulated difference of dopant distribution
0.0 20 40 6.0 g0 = profile of an NFET as gate-STI shrinks. Both

Inverse of gate-STI distance [1/um] extension and S/D dopant diffusion are retarded.

Fig. 5 Dependences of delta Vth_sat and delta overlap
length on gate-STI distance for NFET.

* Threshold changes ~40 mV in response to a simple layout change
» Simultaneously, Leff changes by ~4 nm due to S/D TED

Semicon West 2008 | , ,,S‘{EEPSSYS




Typical V- Behavior vs Poly-to-STI Dist.

Threshold Shift, mV
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32nm Libraries: Everybody’s Jogging
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» Despite restricted design rules, lots of active jogs and isolated vs nested gates
» Significant V; and | variations persist
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Shape of the Source/Drain Layout

Simple rectanqular Increasingly popular
“l shape” “H shape”
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Exploit Symmetry -> Model ¥ Structure

Simulation domain Simulation domain

Simple rectanqular Increasingly popular
“l shape” “H shape”
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S/D Arsenic TED

Higher TED in the middle of S/D Even higher TED @SDE
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Schematic TED Distribution: Top View

TED peak is away from STI TED peak is higher &
close to the channel
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Quantitative S/D TED Assessment

Az interstitial pairs

2.h | | | I | |
I shape —F—

H shape ——+«— 40%

H-shape S/D has
40% more TED
@SDE than I-shape,
which translates
into shorter Leff
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The Jog Effect Increases With Scaling
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* Negligible effect @0.3um,
» Becoming major effect @0.1um
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Comparing The Two Effects
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Distance, pm  The effects are comparable
* Trends are in the same direction
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Compact Model for V- and L

Fle Edit View Layout Traversal Macros Tools Wndow Seismos

B o R DL e o 3]k e o | |OT MEEIE BN O RS

allx -0000000.143 , +0000001.126 um § 1dbu=0.001u

Map Mode : % HNonmal Area

Help

Value
Stress StressX
Stressy Stresss
¥ Vth Mohility

Mormalize {Mobility and Vth)

Range
Min |-0.08662  Max |0.04748E

Display average per gate
W Display visible area only

Color Value Showr

Bl  oo0s7--0073
P 0073 -0.060

-0.060 - -0.046
-0.046 - -0.033
-0.033 - -0.020
-0.020 - -0.006
-0.006 - 0.007
0.007 - 0.021
0.021 - 0.034

| ] 0.034 - 0.047

For fast analysis of V; and L_4 variations, a compact model compliments TCAD
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Conclusions

« Optical effects analyzed for laser annealing

« Pattern-specific heat transfer and stress evolution
are discussed

« Approach to improve T uniformity suggested

 New V; and L 4 layout-induced variations are
shown for the {’:an node

* Approach for fast V; and L 4 analysis suggested

 Continuum models applied to optical, heat
transfer, & stress calculations. Besides, KMC and
compact models applied to diffusion, defects, and
dopant activation.
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