SemEquip

The Cluster Implant Source

Cluster Implant for 32nm

Wade Krull AVS WCJUG SemiconWest 08

© 2008 SemEquip, Inc.

Equip The Cluster Implant Source

AVS WCJUG SemiconWest 08

SemEquip

The Cluster Implant Source

ClusterBoron Implant for 32nm PMOS SDE

© 2008 SemEquip, Inc.

45nm & 32nm USJ Requirements

45 nm Node:

$$\square R_s \sim 1000 \Omega/sq$$
, $X_j < 20nm$

 $\square R_{s} \cdot X_{j} < 20 \text{ (k}\Omega\text{-nm)}$

32 nm Node:

- $R_{s} < 1000 \,\Omega/sq$, X_j < 15nm
- $\square R_{s} \cdot X_{j} < 15 \text{ (k}\Omega\text{-nm)}$

Emeguip The Cluster Implant Source

AVS WCJUG SemiconWest 08

Implant Conditions

- B₁₈H₂₂ 500eV (equiv)
 1E15 atoms/cm²
- BF₂ 500eV (equiv)
 1E15 atoms/cm²

Co-implants:

- C₁₆H₁₀ 3keV (equiv)
 1E15 atoms/cm²
- Ge+ 20keV
 - 5E14 atoms/cm²

#	Implant			
1	B ₁₈			
2	B ₁₈ + C ₁₆			
3	B ₁₈ + Ge			
4	B ₁₈ + C ₁₆ + Ge			
5	BF ₂			
6	BF ₂ + C ₁₆			
7	BF ₂ + Ge			
8	BF ₂ + C ₁₆ + Ge			

AVS WCJUG SemiconWest 08

B₁₈**H**₂₂ and **BF**₂ with Co-implants

$B_{18}H_{22}$ with co-implant

BF₂ with co-implant

B₁₈**H**₂₂ & **BF**₂ implant - 500eV (equiv), 1e15

AVS WCJUG SemiconWest 08

6

emEquip

Flash Anneal Conditions

- <u>f-spike 900°C</u>, f-spike 1000°C
- f-spike1025°C, f-spike1050°C
- $\underline{T_i}$ -750°C T_{pk} 1050°C & <u>1250°C</u>
- $\underline{T_i}$ -900°C T_{pk} 1250°C & <u>1350°C</u>
- $\underline{T_i}$ -1000°C T_{pk} 1250°C & 1300°C

B₁₈ and **BF**₂ implants are 500eV per boron atom @ 1e15 atoms/cm²

AVS WCJUG SemiconWest 08

B₁₈ – 500eV, 1e15 (SIMS PROFILE) - FLASH ANNEAL

Sample ID		B ₁₈ 500eV, 1e15				
Anneal Recipe	Spike 900C	Spike 1050C	T _i _900C_ T _{pk} _1350C	T _i _1000C_ T _{pk} _1250C	T _i _1000C_ T _{pk} _1300C	
Rs (Ω/sq) 1431		428	562	582	523	
Xj (nm)	15.4	37.8	20.4	28.0	27.9	
Rs. Xj / 1000	22.0	16.2	11.5	16.3	14.6	

AVS WCJUG SemiconWest 08

The Cluster Implant Source

AVS WCJUG SemiconWest 08

iRTP 900°C, fRTP T_i 900°C - T_{pk} 1350°C

High boron concentration at Ge EOR defect region. Reduced concentration with $C_{16}H_{10}$ at iRTP 900°C. The concentration is removed at the higher flash temperature Tpk = 1350°C.

EACTOR THE Cluster Implant Source

AVS WCJUG SemiconWest 08

 $R_s \cdot X_j$ product is lowest for the $B_{18}H_{22}$ implant, satisfying the 32nm requirement.

EXAMPLE 1 The Cluster Implant Source

AVS WCJUG SemiconWest 08

$R_s \cdot X_j$: 32 nm Node

Anneal Conditions for B₁₈H₂₂

 $R_s \cdot X_i$ shows that the flash anneal satisfies the 32nm requirement.

The Cluster Implant Source

emEquip

AVS WCJUG SemiconWest 08

AVS WCJUG SemiconWest 08

XTEM: fRTP (T_i 750°C & T_{pk} – 1250°C) Diffusionless Anneal

emEquip

The Cluster Implant Source

AVS WCJUG SemiconWest 08

XTEM: iRTP 900°C & Flash Anneal

Table I						
Implant	Anneal (iRTP)	EOR defect	Depth (nm)			
B ₁₈	iRTP @ 900⁰C	NO	х			
B ₁₈ + C ₁₆	iRTP @ 900℃	NO	х			
B ₁₈ + Ge	iRTP @ 900℃	YES	35			
B ₁₈ + C ₁₆ + Ge	iRTP @ 900°C	YES	35			
BF ₂	iRTP @ 900°C	NO	х			
BF ₂ + C ₁₆	iRTP @ 900°C	NO	х			
BF ₂ + Ge	iRTP @ 900°C	YES	35			
BF ₂ + C ₁₆ + Ge	iRTP @ 900°C	YES	35			

Table II					
Implant	Anneal (iRTP) EOR defect			1	
B ₁₈	T _i 750°C T _{peak} ⁻1250°C	NO	x		
B ₁₈ + <mark>Ge</mark>	T _i 750°C T _{peak} −1250°C	YES	35		
BF ₂	T _i 750°C T _{peak} −1250°C	YES	5		
BF ₂ + Ge	T _i 750°C T _{peak} ⁻1250°C	YES	32		

- B₁₈H₂₂ is the only implant technology with no EOR defects following flash anneal.
- With diffusionless anneal, Ge co-implants are left with EOR defects whereas they are absent with $C_{16}H_{10}$ co-implants.

EACLOSE The Cluster Implant Source

AVS WCJUG SemiconWest 08

Summary

- 32nm targets are achievable with 500eV equivalent B18 implant and flash anneal
- Boron diffusion observed with 900C spike
 - Amorphous state diffusion
 - Profile tail diffusion driven by EOR damage
- EOR damage not observed for B18 implant even with diffusionless anneal process

SemEquip

The Cluster Implant Source

ClusterCarbon Implant for NMOS Stressor

© 2008 SemEquip, Inc.

NMOS Stressor Requirements

- Emulate success of PMOS e-SiGe for NMOS
 - Provide performance boost independent of scaling and gate stack formation
 - Goal of 10-30% drive enhancemen

Si:C materials science very different from SiGe

- Epi process chemistry very difficult
- 1.5-2% limit to carbon fraction in silicon lattice
- Substitutional carbon required

The Cluster Implant Source

emEquip

- Interstitial carbon degrades stress
- Compatible with CMOS integration

AVS WCJUG SemiconWest 08

Si:C Layer Formation : ClusterCarbonTM implant approach

- Self-amorphization with cluster implants
- Elimination of extra PAI-implant
- By suitable process sequence, elimination of end of range damage and better recrystallization
- Higher [C]_{subs} with millisecond anneal
- Better leakage current performance
- Higher throughput

AVS WCJUG SemiconWest 08

ClusterCarbon Implant Advantages for Si:C Stressor

- Implant approach provides simple and direct process for stressor formation
- Implant provides very accurate control (1%) of carbon concentration
 - Multiple implants at different energies can be used to tailor carbon depth profile
- ClusterCarbon implant self-amorphization with low crystalline damage below a-Si layer
 - Amorphous layer thickness determines stressor thickness
- Highest substitutional carbon achieved by recrystallation of amorphous layer by millisecond anneal process

AVS WCJUG SemiconWest 08

ClusterCarbon: C₇H₇ from C₁₄H₁₄

The Cluster Implant Source

AVS WCJUG SemiconWest 08

UV Raman (363.8nm) Results C₇H₇ @3e15

Substitutional Carbon Percentage from HRXRD

FIG. 2. XRD rocking scans around the (004) Bragg reflection of three epilayers (dots: measurements, solid lines: simulations). Arrows indicate peak positions corresponding to epilayers with the same C concentrations as given, but assuming a variation of the relaxed lattice constant according to Vegard's rule between Si and C, and between Si and β -SiC.

6. Different concentrations of Si_{1-x}Ge_x and Si_{1-y}C_y epi films used as pMOS and nMOS S/D stressors, respectively. Interference fringes indicate high crystalline quality. (Source: ASM)

$\Delta \omega$ vs substitutional carbon percentage

The Cluster Implant Source

AVS WCJUG SemiconWest 08

Substitutional Carbon Percentage from HRXRD Fit for Experimental data

From $\Delta \omega$ we can estimate substitutional carbon percentage

The Cluster Implant Source

AVS WCJUG SemiconWest 08

BO

Substitutional Carbon Percentage determined with HRXRD

Chained or Multiple implant – HRXRD Flash Anneal (2k + 5k + 8k) @ 3e15

AVS WCJUG SemiconWest 08

B2

The Cluster Implant Source

Chained or Multiple Implant – HRXRD SPE Anneal @ 750°C and 850°C (2k + 5k + 8k) @ 3e15

ClusterCarbon - % [C]_{sub} vs % [C]_{atomic}

84

The Cluster Implant Source

% $[C]_{sub}$ Dependence on α -Si Thickness

HRXRD Results - Substitutional Carbon

#	Implant Energy	SIMS plateau depth at 5e20 (atoms/cm ³) (nm)	% of Substitutional Carbon for various anneals					
			<mark>SPE</mark> 750°C - 5sec	<mark>SPE</mark> 850°C - 5sec	iRTP 800°C	iRTP 850°C	<mark>Flash</mark> T _i 750°C T ^{peak} 1059°C	Flash T _i 750°C T ^{peak} 1272°C
1	<mark>2k + 5k +</mark> 8k <mark>3e15 + 3e15</mark> + 3e15	41	1.55	1.68	1.66	1.35	1.75	2.19
2	<mark>3k + 6k +</mark> 9k 1.5e15 + 3e15 + 3e15	48	1.66	1.50	1.66	1.22	1.82	1.88

Percent of substitutional carbon is highest with MSA anneal

 For SPE, going beyond 850°C reduces the amount of substitutional carbon, confirming the results that carbon is kicked out of its substitutionality beyond 800°C

AVS WCJUG SemiconWest 08

B6

Summary

- ClusterCarbon provide an approach to NMOS stressor which is simple, direct and inexpensive
- ClusterCarbon approach demonstrates incorporation of greater than 2% substitutional carbon with millisecond anneals
- 1.5% substitutional carbon could be achieved just with SPE alone
- The ClusterCarbon approach eliminates the need for PAI implant that is otherwise required for monomer carbon implants
- % [C]_{sub} scales with percent of atomic carbon concentration
- Amorphous layer depth is critical in obtaining higher [C]_{sub}
- The heavier the mass of the ClusterCarbon, the better is the $[C]_{sub}$ incorporation

AVS WCJUG SemiconWest 08