

West Coast Junction Users Group Meeting "USJ Formation for 32nm Node"

Single Wafer Implantation Process Matching

Mark Harris – Axcelis Technologies M.S. Ameen, L.M. Rubin, T.H. Huh, K.W. Lee, R.N. Reece G.J. Ra, C. Huynh (Zeiss)

July 17th, 2008

Acknowledgements

- Mike Ameen
- TaeHoon Huh
- Chuong Huynh
- Ron Reece
- Leonard Rubin
- GeumJoo Ra
- KyungWon Lee

Outline

- Implanter Scanning Architectures
- Beam and Ion Flux Differences
- Thermal Modeling and Measurements
- Process Effects
- Case Study
- Conclusions

Introduction

- Successful implanter architectures exist for high current implantation; spot (stationary) and ribbon beam systems
- There are differences in the beam scanning mechanisms and in the ion beams for each architecture
- The combination of scanning and beam properties directly affect:
 - Damage Accumulation Rate
 - Thermal Properties ranging from 10⁻⁹ sec. to several seconds
 - Amorphous Layer Formation
- Understanding these variables is critical for process control, as well as for matching results across platforms
 - Successful strategies have been developed

Definitions

Peak Dose Rate

• The instantaneous rate of arrival of ions to the surface, ions/cm²/s

Effective Dose Rate

• The dose rate averaged over an entire wafer, or a spot on the wafer

Duty Cycle

• Beam time on the wafer (or spot) ÷ Beam time off the wafer (or spot)

Description of Scanning Dynamics

Parameter	SYMBOL	2D mechanical	2D mechanical	1D mechanical
		13w batch	single wafer	single wafer
Beam Current (mA)	1	15	15	15
Beam X-Width at 3σ (mm)	W	70	50	350
Beam Y-Width at 3σ (mm)	Н	50	70	70
Fast Scan Speed, X-direction (cm/sec)	V _f	5600	200	NA
Slow Scan Speed, Y-direction (cm/sec)	Vs	5	5	5

Beam Representation

8

10

Beam Parameters in Scanning Dynamics

Parameter is normalized to 1 for each row

Parameter	SYMBOL	2D mechanical	2D mechanical	1D mechanical
		13w batch	single wafer	single wafer
Ion Beam		spot	spot	ribbon
Rectangular Beam Density (uA/cm ²)	j = 1/ (wh)	1	1	~.06
Ion Flux (ions/cm ² /sec)	J=j/qe	1	1	0.1
Average Ion Flux (ions/cm ² /sec)	$J_{avf} = J\tau_f$	0.1	1	1
Scan Duty Cycle (Fast Scan)	$\tau_f = T_{onf} / T_f$	0.007	0.06	1

- 1. Beam density is higher for the spot beam systems
- 2. Ion Flux is 10X for the spot beam system
- 3. "Average Ion Flux" is approximately the same
- 4. Duty cycle varies widely depending on scanning mechanism

Peak Dose Rate for Stationary and Ribbon Beam Systems

Thermal Signatures Fast Scan Duty Cycle

Assumptions

- 1. Slow scan speeds are the same
- 2. Coefficient of heat transfer is the same (wafer returns to baseline when beam moves off a spot)
- Longer Dwell Time results in higher temperature rise
- In this case, Duty Cycle is >20X

SenseArray Measurements – Slow Scan Duty Cycle

Duty Cycle in Slow scan affects bulk (macroscopic) thermal response

Peak temperatures are similar during the implant

High scan speed has a larger thermal budget in this case.

Damage Accumulation

Interaction of Ion Flux and Temperature

- There is a complex interaction of the Ion Flux and Wafer Temperature during the implant process
- The Ion Flux governs <u>damage accumulation rate</u>
 - <u>Peak Dose Rate</u> coupled with duty cycle are the primary factors
 - <u>Beam Current</u> is the primary factor for a given architecture
- Thermal Profile determines the rate of damage annihilation during an implant
 - **Duty Cycle** in the fast scan direction is primary factor
 - <u>Coefficient of heat transfer</u> is dependent on system design and governs the cooling rate when the beam is off the wafer

Effect of Duty Cycle and Ion Flux BF₂ 10 keV 5x10¹⁵ ions/cm²

Implant Temperature Interaction with Ion Flux

Red curve has been pushed into amorphous layer formation

Altered diffusion and activation characteristics

Ion Flux Effect on Channeling Profiles As 15 keV 8x10¹³/cm²

Initial Data SIMS Profile Comparison (BF₂, 10keV)

The SIMS profiles were well matched for both as-implanted and annealed samples

Initial Data Device Test Results

Device Test Results [Normalized]

The observed values of PMOSFET parameters such as drive current, off current, junction capacitance, junction leakage, etc. suggested that the transistor channel lengths from the spot beam implanter were <u>longer</u> than those from the ribbon beam implanter.

Results Amorphous Layer

Higher Dose Rate & Lower Wafer Temperature Produce Thicker Amorphous Layer.

Fluorine Segregation at Amorphous/Crystalline Interface (Second F Peak)

- Higher dose rate & lower wafer temperature of spot beam produces:
 - Deeper second fluorine peak
 - Lower residual damage (reduced F segregation)

Experimental Approach to Simulate Ribbon Beam with Spot Beam

- Dose Rate Effect
 - Dose Rate should be Decreased.
 - Variables: Fast and Slow Scan Speed
- Wafer Temperature Effect
 - Wafer Temperature should be Increased.
 - Variables: Wafer Chuck Temperature & Cooling Gas Pressure

Test Matrix

#	Fast Scan Speed [m/s]	Slow Scan Speed [mm/s]	Wafer Chuck Temperature [°C]	Remark
1	~ 1.0	~ 25	15	
2	~ 2.0	~ 45	15	Normal Operation
3	~ 3.0	~ 45	15	
4	~ 2.0	~ 45	45	

Results Dose Rate Effect

Decreasing the dose rate by increasing both scan speeds increased the secondary fluorine peak height, but not to the level of the ribbon beam implanter.

Results Wafer Temperature Effect

- Increasing the wafer
 temperature up to 45°C
 increased the fluorine
 secondary peak to a level
 higher than that of the
 ribbon beam reference
 - The normal wafer temperature is 15°C

Device Test Results

30 °C is a good matching condition for both V_{τ} and R_{s}

Conclusions

- Average Ion Flux governs primary damage accumulation rate
 - Very different between multi-wafer systems and single wafer systems
 - This causes significant variance in amorphous layer thickness; matching results across platforms is problematic
 - Though the beams and scanning systems are quite different, average ion fluxes are similar for ribbon and spot single wafer systems
 - Thermal Properties are strongly governed by beam scanning dynamics
 - Subtle effects on self-annealing which are related to baseline temperature and the duty cycle
 - Control of temperature through chuck design and cooling systems can be used as a method to fine tune the process results
- Process matching can be accomplished through straightforward adjustments to wafer temperature or average ion flux

