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o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing

o Summary
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Why Multi-gate for 22nm & beyond ?

e Double gate
structure much
better gate-to-
channel control

e =>» better short
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USJ challenges for FInFET

FIN amorphization /recristalization

FIN implanted with As + annealed
- Poor re-crystallization
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Duffy, APL, 90, 2007
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» FinFET has new set of challenges for junction
formation (conformality, defectivity, etc ...) !!

- T. Hoffmann
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ITRS Scaling of L, and X;
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Junctions are becoming extremely shallow and difficult to form

- Hoffmann
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USJ roadmap (IMEC view)
... assuming Planar architecture
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o Different paths for scaling & implications for USJ]
» From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing

o Summary

- offmann
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Concept of co-implants

surface
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Co-implantation suppresses diffusion
of Si interstitials from End-Of-Range

T. Hoffmann
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1D : Carbon co-implanted p-type juncti
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2D electrical profiling of pMOSFET

SSRM (Scanning Spreading Resistance Microscopy)

Courtesy: P. Eyben [IMEC]
F co-implant PAI+C+B

Co-implantation
with Carbon:

22 nm 10 nm 4  Reduces extension

AL N 14 overlap
-) i _ nm - Suppresses HDD
5 nm 34 nify

82 nm :

diffusion towards
gate edge

50 nm

- T. Hoffmann
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2D electrical profiling of pMOSFET

SSRM (Scanning Spreading Resistance Microscopy)

PAI+C+B !

22 nm 10 nm 2

“ 14 nm

-'. .-
.

872 nm

:

50 nm

. C without pre-amorphization does not reduce junction overlap
© Imec 2uus | 12




Carbon co-implant

Transistor performance

Iml (MA/pmM) at IOFF=1DD nA/pm
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o Improved SCE with no performance loss
demonstrated with PAI+C (specially for pMOS)

- T. Hoffmann
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Carbon for junction thermal stability
DRAM anneal (DA) = 750C-30min

107 0.7 With C co-implant
After spike annealing at 1030°C
n' —o— Without DRAM anneal 0.6 - +DA
10 = \\Vith DRAM anneal

no C co-implant

B concentration (atoms/cm®)

100 1000
Si Depth (nm) Lg [nm]

e Junction thermal stability is critical for some application
(e.g., DRAM periphery)

e Carbon can improve significantly the junction thermal
stability

- T. Hoffmann
lm eC © imec 2008 14



Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

o ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
— Aggressive junctions design with MSA-only

- Impact on junction leakage (residual defects)

— Compatibility with HKMG stacks

— Compatibility with strain boosters

— Process control & manufacturability

e Summary

o | offmann
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Thermal Budget

Temperature
T= 550-700C T= 1000-1100C | T= 1100-1300C T= 1100-1300C
~1min A~1s ~1ms ~0.2ms
A
Solid Phase | | Rapid Thermal Flash Laser
Epitaxial Regrowth Annealing Annealing Thermal
(SPER) (Spike RTA) Annealing

O Hoffmann
\MQEC ec 2008 | 16



32nm specifications
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Laser anneal only enables to meet 32nm specs.

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
- Aggressive junctions design with MSA-only

— Compatibility with HKMG stacks

- Impact on junction leakage (residual defects)

— Compatibility with strain boosters

— Process control & manufacturability

e Summary
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MSA in addition to Spike

Performance ‘booster’

Ruced
Poly-depletion

Reduced
Serie resistance |

e Laser anneals improves:
- Poly-gate doping
— Junctions activation
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T. Hoffmann
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- . AL AL
Spike-Laser sequence impact o C
Spike Laser
PMOS RTA _
L Laser Spike
aser
Hoffmann [IMEC], IW]JT'07 RTA
_ 360
S 350 |
<
= 340
£
3 330 -
=
% 320 1 =R - improved Bo activation
£ 310 - reduced dose loss
é 300 - reduced mobility loss
& 290 1
K] ~- Flow B
280 w

Bo dose loss
(extension & Spike Spike + Spike +
poly-gate) Laser-1200C Laser-1350C

» Up to 9% performance improvement demonstrated with additional
Laser anneal with “Spike-last” sequence.

e KMC simulation confirmed it is due to less B-I clusters formed

during Spike with a pre-Laser anneal
T. Hoffmann
© imec 2008 20




Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
— Aggressive junctions design with MSA-only

— Compatibility with HKMG stacks

- Impact on junction leakage (residual defects)

— Compatibility with strain boosters

— Process control & manufacturability

e Summary

o | offmann
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USJ opportunities with advanced gate st

Spike-RTA

COMPATIBLE with MSA

T. Hoffmann

© imec 2008 22



Laser-only junctions design
Methodology

pMOS

(implant tw

UNDERLAP

811 16-18

MARGINAL
UNDERLAP

33-37 20-25
Laser - 0.5keV Laser - 1keV

e Use of SSRM and TCAD for successful
device targeting:
- nMOS - As (3keV) need to be tilted (> 7D)

- pMOS > B (0.5keV) : OK with tilt = 0o

OVERLAP

mann
2008 23




Extensions redesign with MSA

500 T

DIBL [mV/V]
—h N w =
o o o o
o o o o
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Physical Lg [um]
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1KeV TO
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S CVARE
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1KeV T15

Spike reference

500 T

DIBL [mV/V]
i N (9% ] =
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o

0.05
Physical Lg [um]

Proper placement of
dopants (Tilt, energy) is
even more critical with
diffusion less approach

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Device scaling with Laser

@loff=100nA/um

As 3KeV T15

B 0.5KeV TO ® Spike only
® Laser only

0 10 20 30 40 50 60 70 80
Lg min [nm]

32nm requirement has been achieved

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Laser Power

Laser 1100°C Laser 1200°C
1.E-05

1.E-06

Laser power
optimization is
very important to
achieve high

200 400 600 performance
lon [MA/um]

=
=
< 1.E-07
S

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Co-lmplantatlon with MSA

60

Physical Lg min @loff fixed

llll’lllllllllrlllllllll*llll

Increase F dose
30

Ge= F . Ge/F
Co-implantation still mandatory to avoid
channeling and Boron TED

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
— Aggressive junctions design with MSA-only

— Compatibility with HKMG stacks

- Impact on junction leakage (residual defects)

— Compatibility with strain boosters

— Process control & manufacturability

e Summary

o | offmann
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Advanced gate stack option

FUSI RPG MIPS

Gate last Gate last Gate first

e Metal fogoting

QQ_
(qv]
3
D
0§
O35
-

S
®

SiN ALD - Metal

@ end of
process

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Vth sat [V]

FUSI case

S
o

=
o

nMOS

—e—Spike only I_Excel lent
—e—Laser only scaling has been

DR observed on
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¥ / (Gate last process)
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Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland



VTsat [V]
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Metal Insert Poly-Silicon case
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B 1KeVT
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—8— Laser only
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1

Junction =
re-optimization <. 1.E-09

©1.E-10
1.E-11

pMOS

0.01
Physical gate length [um]

0.1

y

1.E-12 ¥

B Spike only -
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¥

O
As 3KeV T15 f’

;n

500
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Junction design can be highly
sensitive to the gate stack chosen

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Typical gate profile

Straight

Undercut

e Poor overlap between gate
and junction

e USJ] re-targetting would
allow good overlap

Footing

e Overlaps depends if the
taper is electrically part of
the electrode

e USJ] re-targetting would
allow good overlap

e Good USJ] alignment with
gate edge

Dopant implantation and placement are very
sensitive to gate profile with diffusion less anneal

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




MIPS with straight gate profile

As 3KeV T15 N
0.8

0.6 -

o o
o NN B
| I |

Vth Sat [V]

Scalability with Laser

anneal on MIPS 0.01 0.1 1

required straight gate Physical Gate Length [pm]
profile

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




S. Kubicek et al., IEDM 2007

= * : _1 B :
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HFS oun Ul

1'_},.

o
1 ..l.'
b

onduction band edge Mixed Layer of
HfSiON & AIO

Ta,C + La,O; + HfSIiON

» High-K ‘doping’ with capping (eg, LaO, AlO) shifts eWF to
band-edge = low nMOS & pMOS Vt's

» Thermal budget impacts capping “efficiency”

T. Hoffmann

IIT'08 - Monterey, CA © imec 2008 34



Controlled capping mixing with Laser

IEDM 2007
Intermixing 7
with higher -0.1
0.7 S Thermal budget HLP
0.6 [MroS 02 -
0.5 ’\\\ Splke - Laser
0.4 03 -
0.3 | ¢ N
= 021 LaoO £ -04 - + AIO cap
£ 0.1 o cap| «—— with cap — with cap £
S 0? “AlO 0.5 -
-0.2 - 06 | LLP —e— capped, Laser.-anneal
-03 - A -U. —0O— uncapped (Spike-RTA)
04 - —e— capped (Spike-RTA) |
05 | A MOS -0.7 i w ‘

-0.6 ' 13 14 15 16 17 18 19
Spike LLP MLP HLP Spike .
EOT (A)

» Beside known potential for Lg scaling, Laser anneal has :
- Benefit in EOT regrowth containment

— Controlled capping mixing with High-K and/or IL

- T. Hoffmann
lmeC © imec 2008 35



Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
— Aggressive junctions design with MSA-only

- Compatibility with HKMG stacks

- Impact on junction leakage (residual defects)

— Compatibility with strain boosters

— Process control & manufacturability

e Summary

o | offmann
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Diode leakage

« High Ge energy
increase
dramatically the
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Defects position
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Defects position: Xj - EOR [nm]

Defect position as function of junction depth is
very important to contain the leakage

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland
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Halo dose: 0% - As 3.5¢13 cm2

IIT'08 - Monterey, CA

Spike - Laser : 10x
penalty in junction leakage

Diffusion-less - halo
strength can be
dramatically reduced
without SCE control loss

Huge reduction in Band-
To-Band tunneling leakage

T. Hoffmann
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Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
— Aggressive junctions design with MSA-only

— Compatibility with HKMG stacks

- Impact on junction leakage (residual defects)

— Compatibility with strain boosters

— Process control & manufacturability

e Summary

o | offmann
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Impact of MSA peak Tempere

on SiGe

E. Rosseel [IMEC], RTP'07

Window of application

*************************

Nomarsky images
(SiGe ~25% Ge)

,,,,,,,,,,,,,,,,,,,,,,,,,,,

T
: :
! g ! Solidus:
o
l I

fffffffffffff 937°C]
|
02 04 06 08 1
Ge content Stohr, H., W. Klemm, Z. Anorg.

Allgem. Chem. 241 , 1954, 305.

ann
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Effect of Dwell Time and Ge % on

Temperature Onset of Line Defects

1400 .
R » Decrease with Tr
o A .
= A » Lower LDPTT with T[Ge]
= —e ]
8 1300 ]\ o Lower LDPTT with T tg,
' \ :
ER L » Seems to be determined
E S IURENY by effective stress and

- S
2 1200 R - stress rate
m| o] TS .
5'3 1150 ~.. 4. "= |e Shorter dwell times
2 —e—15%B0nm| N[ -, enable larger LDPTTs
é 1100 1| - ® - 25%/80nm S
5 —A— 25%/60nm )
— - 35%/60nm
1050 |
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Dwell Time (ms)
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Impact of MSA peak Temperature on SiG

4 E. Rosseel [IMEC], RTP'07 5
i | | |
| | | g 40T
5 L . o
B ‘ D — | — £
= 5#5 | s
26 SR . £ a5l
: Th]
: z s
=" -7 L . n .E . ——LSA
&0 . A < 25| W 800CRTA
o)
3 SiGe (25%) ® 700C RTA
QL :_ __________ :r _________ ] 2 1 1 1 1 1
8 | | | 700 800 900 1000 1100
Junction leakage Laser Anneal (C)

-9 | | | C. Cheirigh et al., MIT, ECS Trans.,3(2), 2006
No LA 1100 LA1200 LA 1300 LA

e Large junction leakage increase after Laser-anneal =
alternative integration flow required to alleviate the
problem

- Hoffmann
l m e C ec 2008 43



Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

e ... to diffusion-less with milli-second annealing (MSA)

- Fundamental advantage of milli-second anneal

— Milli-second annealing entry point : combination with Spike
— Aggressive junctions design with MSA-only

— Compatibility with HKMG stacks

- Impact on junction leakage (residual defects)

— Compatibility with strain boosters

— Process control & manufacturability

e Summary
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Stitching on devices?

43 identical modules / die
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~11mm methodology to
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Impact on devices

—— B Spike only

N
o
I

m Laser only

-
(&)
l

—h
o
lllllllll!lllllllll

—#-Spikeonly  gyitching

Source of spread:
1) Other process
steps

2) Laser w/o
absorbing layer

1 2

—&— Laser only

Vth lin variation [mV]

10x10um?2

0O 10 20 30 40 50 long channel short channel
X position [mm] device device

« Laser signature is clearly visible in long channel

- Impact is negligible in short channel compared to other
sources of spread

Honolulu VLSI Technology June 19th 2008 : 19-1 C. Ortolland




Outline

o Different paths for scaling & implications for USJ]
* From low dopant diffusion with co-implantation ...

o ... to diffusion-less with milli-second annealing
- Fundamental advantage of milli-second anneal

- Aggressive junctions design (with or without additional Spike-RTA)
- Impact on junction leakage (residual defects)

- Compatibility with HKMG stacks

— Compatibility with strain boosters

— Compatibility with alternative doping techniques

— Process control & manufacturability

e Summary

o | offmann
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Non-melt MSA : Process window is fu |'
of device architecture !

eSiGe >
i Poly-depletion PW

H|gh -K cap

1000C 1100C 1200C 1300C 1400C T

* MSA has many challenges/opportunities in advanced devices

e Overall Process Window is not unique = f(application, perf.
boosters)

- T. Hoffmann
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