

Infusion Doping for USJ Applications with Gas Cluster Ion Beam Processing

CONFIDENTIAL

TOKYO ELECTRON

Nate Baxter TEL-Epion Semicon West 2008 AVS WCJUG

- Gas Cluster Ion Beam Introduction
- GCIB USJ Doping
- Defects
- Activation Enhancement
- Conclusion

CONFIDENTIAL

TOKYO ELECTRON

Infusion: Gas Cluster Ion Beam Processing

Infusion: Gas Cluster Ion Beam Processing

Almost any mix of gaseous species

- B₂H₆, PH₃ for doping
- SiH₄, GeH₄, NH₃, CH₄, N₂, Ar, O₂ for surface modification or film deposition
- NF₃, CF₄ for etching

During transport, clusters have:

- High total energy (many kV)
 - > Leads to extreme chemical and physical reactions at the substrate
- Low energy per molecule (<5eV)
 - No atom penetrates deeply into the substrate

TEL Epion / TEL Confidential

Gas Cluster / Surface Interaction

Upon Impact

- Cluster immediately dissociates
- Transient (<10psec) thermal and pressure spike defines infusion region

The cluster/substrate interaction is unique

Infusion achieves process results not possible by conventional techniques (Different from ion implantation and plasma process)

Author / BU or Group / CIM Control Number: ###-########### (if Confidential or Strictly Confidential)

Gas Cluster Ion Beam Introduction

- GCIB USJ Doping
- Defects
- Activation Enhancement

TEL Epion / TEL Confidential

• Conclusion

USJ doping energies for Xj ~10nm (Ge PAI + B 500eV)

CONFIDENTIAL

TOKYO ELECTRON

0.1

8

USJ per atom doping energies for Xj ~10nm (Ge PAI + B 500eV)

0.1

USJ per atom doping energies for Xj ~10nm

721

Infusion doping for USJ

CONFIDENTIAL

TOKYO ELECTRON

GCIB doping depth scales with E^{1/3} and is mass independent

TEL Epion / TEL Confidential

Author / BU or Group / CIM Control Number: ###-############ (if Confidential or Strictly Confidential)

CONFIDENTIAL PEOPLE, TECHNOLOG' Self-sputtering test for ultra shallow GCIB: TOKYO ELECTRON Linear Relationship GCIB Dose vs Retained Dose

TEL Epion / TEL Confidential

Author / BU or Group / CIM Control Number: ###-############# (if Confidential or Strictly Confidential)

12

COMMITMENT

Ion implant Self-Sputtering limitations

TEL Epion / TEL Confidential

USJ Boron Doping: Device Lots

TEL Epion / TEL Confidential

Non-ballistic process means no angular variation effects (improved lateral abruptness) for improved V_t spread.

Individual B energy ~1eV, therefore depth is determined exclusively by the collective cluster energy transferred to the Si surface. No straggle possible.

The lack of energetic ballistic B means there will be no angular component to the B infusion.

Any variations in beam angle will have no changes in overlap control or skew.

Vt spread

Ho Lee, Samsung, 2006 IWJT

72I IEL

TEL Epion / TEL Confidential

- Gas Cluster Ion Beam Introduction
- GCIB USJ Doping
- Defects
- Activation Enhancement
- Conclusion

EOR pile up test

CONFIDENTIAL

TOKYO ELECTRON

PEOPLE TECHNOLOG

COMMITMENT

EOR / TED test

TEL Epion / TEL Confidential

PEOPLE TECHNOLOGY

No EOR interstitials generated by GCIB \rightarrow No TED \rightarrow No C required \rightarrow Improved GIDL

CONFIDENTIAL

TOKYO ELECTRON

Plan view TEMs

900C, 30 Sec

1350C Flash 1000C intermediate

Interm ediate temperature:

800°C

22

Amitabh Jain, Mat. Res. Soc. Symp. Proc. vol. 810, C5.6.1, 2004.

TEL Epion / TEL Confidential

Author / BU or Group / CIM Control Number: ###-############# (if Confidential or Strictly Confidential)

Leakage comparison

Doping condition	Anneal	Rs Measurement (Ω/sq)		Leakage I	Xj @
		4 PP	RsL	(uA/cm ⁻)	1E18 (A)
GCIB	Laser	2076	2103	0.1	125
GCIB	450 °C 1 hour + Laser	1513	1547	0.437	125
20kV Ge PAI + 2kV C + GCIB	Laser	1365	1299	1.475	135

- 1. The addition of PAI + C implants + laser anneal increases leakage as compared to GCIB + laser anneal alone.
- 2. Adding a VLTA pre-laser anneal to GCIB doping significantly improves activation.
- 3. Adding a VLTA pre-laser anneal to GCIB doping exhibits increased leakage..

CONFIDENTIAL

TOKYO ELECTRON

- Gas Cluster Ion Beam Introduction
- GCIB USJ Doping
- Defects
- Activation Enhancement
- Conclusion

CONFIDENTIAL

GCIB B activation studies

TEL Epion / TEL Confidential

Author / BU or Group / CIM Control Number: ###-############# (if Confidential or Strictly Confidential)

Interface smoothing by VLTA

CONFIDENTIAL

TOKYO ELECTRON

TEL Epion / TEL Confidential

721

Interface smoothing improves activation

Interface smoothing tests : SIMS

1.GCIB infusion into crystalline or preamorphized Si show same doping profile.

2.VLTA pre-anneal does not affect the diffused profile.

3.Ge PAI + C implants enhance B diffusion.

CONFIDENTIAL TOKYO ELECTRON

Conclusions

- GCIB doping is a shallow self-amorphizing low energy per atom process.
 - Abrupt profiles produced without Ge PAI (C implant)
- GCIB doping is not implantation (ballistic)
 - Channeling or straggle not possible.
 - Improved Vt sigma
 - No Si interstitial defect pile-up at EOR observed
 - No TED observed
 - Lower leakage is observed when compared to Ge PAI+C implanted sample.
- GCIB USJ formation requires hybrid anneals for optimal activation
 - Initial data suggests VLTA improves activation but will require further optimization to reduce leakage.

CONFIDENTIAL

TOKYO ELECTRON

Acknowlegements

- Yan Shao TEL Epion
- John Hautala TEL Epion
- Larry Larson Sematech FEP Division
- Amitabh Jain Texas Instruments, Advanced CMOS

Notice

This material contains confidential information. You shall not copy and disclose to any third party without prior written consent of TEL.

TOKYO ELECTRON LIMITED

