PRESENTATION OF POSTER FROM INSIGHT CONFERENCE 2007

A Comparative Study Of Size Dependent Four-Point Probe Sheet Resistance Measurement On Laser Annealed Ultra Shallow Junctions

Dirch Hjorth Petersen^{a,b}, Rong Lin^b, Torben Mikael Hansen^{a,b}, Erik Rosseel^c, Wilfried Vandervorst^{c,d}, Christian Markvardsen^b, Daniel Kjær^b, Peter Folmer Nielsen^b

^aMIC - Department of Micro and Nanotechnology, Nano-DTU, Technical University of Denmark ^bCAPRES A/S, Scion-DTU, Denmark ^cIMEC, Belgium ^dK.U.Leuven, Electrical Engineering Department, INSYS, Belgium

Daniel Kjær, M.Sc.

Introduction

In this work we investigate the relationship between macroscopic and microscopic four-point sheet resistance measurements on laser annealed ultra shallow junctions (USJ) both experimentally and theoretically. Micro-fabricated cantilever four-point probes (M4PP) with probe pitch ranging from 1.5 μ m to 500 μ m were utilized to characterize sheet resistance uniformity.

An ultra shallow junction was formed by low energy ¹¹B implantation (0.5 keV, 1e15 cm⁻²) into a lowly doped 300 mm n-type Si wafer and subsequent laser anneal at a nominal anneal temperature of 1300°C. The laser beam was scanned in straight lines across the sample surface with a step size of 3.65 mm whereas its spot size is significantly larger (~ 11 mm) such that the scanned lines overlap and each region gets irradiated several times.

Four-Point Probes

Four-point probes used in this study consist of silicon oxide or silicon cantilevers coated with a metal thin film (either Au or Ni) and provide extremely low contact forces (\sim 10⁻⁵ N).

SEM micrographs of (a) a multi-cantilever probe with minimum electrode pitch of 1.5 µm and (b) a 500 µm pitch four-point probe with L-shaped static contact cantilevers.

Uniformity of Laser Annealing

High resolution area scan

A 45×101 point area scan measured with a 10 µm pitch M4PP. The scan step size is 50 µm and 250 µm in the x- and y-direction respectively. The laser was scanned in the xdirection. Raw data are represented by dots.

Two periodical features with a period of 3.65 mm and 750 µm are resolved. Line scan performed with a 10 µm pitch M4PP and a step size of 25 µm.

30 mm line scan

Size Dependent Sheet Resistance

and 750 µm. A line scan was repeatedly measured at the same location with various pitched Comparison of measured micro- and macro sheet resistance for the two periods of 3.65 mm four-point probes. The larger probe pitch smoothens out the variation

"Spot Size" / Sensitivity

The sensitivity to local sheet resistance variations, $R_{S,L}$, has been calculated. With R_S as the sheet resistance, p as the probe pitch and A as the area, the sensitivity is defined as:

at the contact points is zero. Note the sensitivity for A and C configuration is "out-of-phase". contacts is ±infinite. The dual configuration has purely positive sensitivity and the sensitivity A and C configuration have both positive and negative sensitivity and the sensitivity at the

Sheet resistance [Ω/□] 750 5700 730 750 680 000 720 690

whereas the apparent good result of the A-configuration is The C configuration gives completely out-of-phase results configuration smoothens the variation significantly. due to an interference-like behaviour. The dual

- FEM simulated 500 µm pitch

Conclusion

It has been observed experimentally that conventionally sized four-point probes significantly conclude that four-point sheet resistance measurements are only correct when the probe underestimates the sheet resistance variations of non-homogeneous USJ. In general we pitch is much smaller than the length scale of the sample variations.

affects the measured resistance. The sensitivity shows how the measured variations may be A clear correlation between the theoretical sensitivity, FEM simulations and measurement results has been established. The sensitivity of the different configuration modes strongly completely out-of-phase with the actual sheet resistance variation.

Acknowledgements

We are grateful for the financial support from Copenhagen Graduate School for Nanoscience and Nanotechnology (C:O:N:T) and the Danish Research Agency (FTP), and acknowledge valuable discussions with Ole Hansen and Peter Bøggild.