# Ion Implantation for Fabrication of Semiconductor Materials & Devices

Michael I. Current: Current Scientific, San Jose CA currentsci@aol.com

Nicholas R. White: Albion Systems, Manchester MA nick.white@albionbeams.com

- 1. Overview of ion implantation for semiconductors
- Radiation issues:
   Plasma Immersion (x-rays)
   8 to 12 MeV Boron (neutrons)
- 3. Toxic materials: molecular ions
- 4. Summary

# **Applications for Semiconductors**

#### Doping of transistors: lons:

B, BF<sub>2</sub>, B<sub>10</sub>H<sub>14</sub>, B<sub>18</sub>H<sub>22</sub> As, P, Sb, In, (Si, Ge, He, F, C)

#### Energy Range: 0.2 keV to 3 MeV (8 MeV)

**Dose Range:** 1e11 ions//cm<sup>2</sup> (threshold) 5e16 ions/cm<sup>2</sup> (poly-gate)

#### Lamination and SOI:

**H-cut:** 5e16 H/cm<sup>2</sup> **SIMOX:** 2e17 to 5e18 O/cm<sup>2</sup>





#### **Current Scientific**

# Overview of Ion Implantation: System Sales

Implantation system sales is a robust, global business now at ~\$1.5 B/year.

 Average selling price is \$3 to 5 M/tool with hundreds of machines shipped per year.

 Since 1970, >7,000 commercial implanters have been shipped for semiconductor fabrication.

Most of them are still in use.



## **Plasma Immersion Ion Implantation**

- "Simple" plasma-wafer system
- Excellent for high-dose, low-energy
- Doping (poly-Si gates); H-cut







## **Secondary Electrons**

- Copious ion current (100's A) yields lots of secondary electrons from the wafer and platen.
- Secondary yield increases with wafer bias.
- Secondary electrons are accelerated by the wafer bias.
- Fast secondaries generate x-rays slowing down in grounded chamber walls.



## **Plasma Immersion: X-ray Suppression**

 Mass filters in ion showers (left) and floating enclosures in PIII (right) suppress x-ray generation at high bias (~100 kV) operation.

• Many commercial PIII systems operate at <5 kV with modest shielding (center).



## Very-High Energy Doping: Cameras

•"Routine" CMOS wells for logic, DRAM & FLASH use ion energies from 0.5 to ~3 MeV.

• Deep wells for high-performance CCD & CMOS imagers would like profile depths of ~10 um or more.

• Range of 8 MeV B is ~10 um.



**Current Scientific** 

### **Tandem Accelerators**

• Tandem accelerators "multiply" the terminal voltage by charge exchanges at the HV.

 >8 MeV ions are produced with B<sup>+3</sup> ions and a 2 MV terminal.

 >10 MeV B<sup>+4</sup> are also produced.



**Current Scientific** 

## **The Wrong Kind of Tandem**



**Current Scientific** 

MAM-A.5

# 2 MV Tandem Implanter

#### **Clean room interface**



Final ion selection

SF<sub>6</sub> enclosure source & injection

Wafer Beam scanning chamber

2 MV terminal (inside enclosure)

**Current Scientific** 



## **Coulomb Barrier**

- Coulomb repulsion is 1st order threshold for nuclear reactions, generating neutrons, gammas, etc.
- <sup>31</sup>P CB's are >40 MeV.
- <sup>11</sup>B CB's are <10 MeV for light (AMU <15) targets.

$$CB = \frac{e^{2}Z_{p}Z_{t}}{4\pi\epsilon_{0}R_{0}A_{p}^{\frac{1}{3}} + A_{t}^{\frac{1}{3}}} A_{t}$$

#### Coulomb Barriers for Boron-11 and Phosphorus-31



Health Physics Society: Jan 2008

# **Neutron Generation**

Model Target (IC wafer)

Si wafer with 50% resist (C) coverage.

#### **Operation Mode**

50% beam on wafer.

# \* C target material is the primary neutron generation concern.

•12 MeV B with 1 particle-uA at 1 m from the wafer produces neutrons at >1,000 uSv/hr.

Safe limit is 0.6 uSv/hr.



#### Estimated Neutron Production by Target Species for 12 MeV Boron lons 10000 1000 Neutrons, microS/hr per microamp at 1 meter 100 -10 -12 MeV B 0.1 0.01 0 14 16 18 2 12 **Target Atomic Number**

**Current Scientific** 

## Neutrons: Boron on Carbon (Photoresist)

• Neutron generation measured in forward direction.

- $\begin{array}{c} (11)B + (12C) \rightarrow (22Na^{*}) + n \\ EC \text{ or } \beta^{+}, 2.6 \text{ yrs} \\ (22Ne) \rightarrow \gamma (1.2745 \text{ MeV}) \end{array}$
- Some data collected <sup>12</sup>C ions into solid B targets.
- Gy to Sv conversion = 10.
- Neutron generation rate drops ~1 decade per MeV below 12 MeV.

Neutron production in forward direction for boron ions on pure carbon, thick target.



# **Operating Conditions**

Safe (<0.6 uSv/hr)</li>
operational beam currents
drop ~1 decade/MeV at ~8
MeV B into 50% PR covered
IC wafers.

0.1 p-uA of B is sufficient
 for ~20 300 mm wafers/hour
 at 1e11 B/cm<sup>2</sup>.

• Higher currents (and throughputs) are possible with shielded, licensed operations.



#### Safe Boron Currents for PR Masked Si Wafers

# 2 MV Terminal Tandem Implanter

#### **Safety Features for 8 MeV Operation:**

- Heavy metal beamstop target for 10 MeV B<sup>+4</sup> ions.
- Ludlam neutron monitor linked to alert and shutdown systems. Sampling times adjusted to avoid false warnings at ~0.6 uS/hr.
- Interlocked wall enclosure at >1 m from wafers and beamstops.
- Injection magnet field monitored to prevent deuterium beam injection.



**Current Scientific** 

## Large Molecular and Cluster lons

• 30 nm Lgate requires 15 to 10 nm SD Extension junction depth.

 Sub-keV B doping favors the use of large molecular or cluster ions.

• New ions are:  $B_{10}H_{14}$ ,  $C_2B_{10}H_{12}$ ,  $B_{18}H_{22}$  and "massive" (~10k) clusters.

#### Energy per atom

$$\mathsf{E}_{\mathsf{atom}} = (\mathsf{M}_{\mathsf{atom}}/\mathsf{M}_{\mathsf{ion}})^*\mathsf{E}_{\mathsf{ion}}$$

Charge =  $(Q_{ion}/e)^*(N_{ion}/N = 1)$ 

When N = 10<sup>4</sup> atoms, **new stopping physics** applies.



**Current Scientific** 

MAM-A.5

 $10^{21}$ 

10<sup>20</sup>

10<sup>19</sup>

10<sup>18</sup>

10<sup>17</sup>

0

500 eV

20

3oron Concentration [B/cm<sup>3</sup>]

## **Toxic Source Materials**

- Handling and abatement procedures are not relaxed.
- Even Carborane breaks up into toxic components (Diborane, etc.) in the beamline and pumps.

| Name               | Chemistry         | Room<br>Temperature<br>Form | PEL or<br>TLV                    | Notes                                                        |
|--------------------|-------------------|-----------------------------|----------------------------------|--------------------------------------------------------------|
|                    |                   |                             | (ppm) or<br>(mg/m <sup>3</sup> ) | PEL: Permissible Exposue Limit<br>TLV: Threshold Limit Value |
| Arsenic            | As                | soild                       | 0.2                              | possible carcinogenic                                        |
| Arsine             | AsH <sub>3</sub>  | gas                         | 0.05                             | pyrophoric                                                   |
| Arsenictriflouride | $AsF_3$           | gas                         | 2.5                              | carcinogenic                                                 |
| Borontriflouride   | BF <sub>3</sub>   | gas                         | 1 and 3                          | reacts with moist air                                        |
| Diborane           | $B_2H_6$          | gas                         | 0.1                              | pyrophoric                                                   |
| Decaborane         | $B_{10}H_{14}$    | solid                       | 0.05                             | explosive above 80 C in air                                  |
| Octadecaborane     | $B_{18}H_{22}$    | solid                       | 0.25                             | highly flamable                                              |
| Carborane          | $C_2B_{10}H_{12}$ | solid                       | not listed                       |                                                              |
| Phosphorus         | Р                 | solid                       | not listed                       |                                                              |
| Phosphine          | PH <sub>3</sub>   | gas                         | 0.3                              | pyrophoric                                                   |
| Antimony           | Sb                | solid                       | 0.5                              | carcinogenic                                                 |
| Silane             | SiH <sub>4</sub>  | gas                         | 0.5                              | pyrophoric                                                   |
| Germane            | GeH <sub>3</sub>  | gas                         | 0.2 and 0.6                      | pyrophoric                                                   |

## **Safety for Ion Implantation**

 Ion implantation for fabrication of materials (SOI wafers) & IC devices is a robust, global business.

 Ion implantation equipment operates with significant risks for high-voltages & currents, toxic materials, high-vacuum, high mechanical energy, & ionizing radiation.

 Safe operations is a key factor in the design, fabrication, installation, operation, maintenance & shut-down of implanters.

 New source materials, new system designs & new operating regimes continually challenge the safety needs of the industry.

• Safety training of engineers, operators and maintenance in new environments (China, India, etc.) is particularly challenging.

