Photoluminescence metrology for global wafer and micro implant and anneal uniformity

Chris Raymond

AVS Junction Technology Working Group
SEMICON West, July 2007
Outline

- Principle of Operation
- PLi Implant and Anneal Metrology
 - As implanted study – dose and energy
 - Anneal process studies
 - Species effects
 - Annealer signatures
 - Laser annealer
 - Measurement precision
- Summary
Predictive Metrics for the Nano World

Principle of Operation

\[P \approx 7 \text{ mW} \]
\[R \approx 1 \, \mu \text{m} \]
\[NF = f(P, R, \lambda) \]

- **Ec**
- **Ev**
- **NF**
- **R_{PL}** - radiative recombination rate
- **R_{SRH}** - SRH recombination rate
- **R_A** - Auger recombination rate

\[\lambda_1 = 0.532 \, \mu \text{m} \]
\[\lambda_2 = 0.827 \, \mu \text{m} \]
PL Imaging (PLi)

- Sub-micron-scale spatial resolution
- Rapid macro and micro scans
- Non-destructive and non-invasive
Contamination and Defect Metrology

Macro-mapping + Micro-mapping

Example macro-map of 200mm blanket SiGe wafer showing metallic contamination from epitaxial process

Micro-map of same wafer showing dislocations

Spatial fingerprinting of electrically active defects from wafer-scale to micron-scale
Outline

- Principle of Operation
- PLi Implant and Anneal Metrology
 - As implanted study – dose and energy
 - Anneal process studies
 - Species effects
 - Annealer signatures
 - Laser annealer
 - Measurement precision
- Summary
As-Implanted Capability – Dose and Energy Impact

USJ, B\textsubscript{10}H\textsubscript{14}, equiv. dose and energy – 0.9 to 1.1×1015 cm-3, 450 to 550 eV

\[y = A_1 \exp\left(-\frac{x}{t_1}\right) + y_0 \]
\[y_0 = 5.092 \]
\[A_1 = 10.27 \]
\[t_1 = 0.356 \]

\[D = 3\sigma/S, \sigma = 0.1\% \]

<table>
<thead>
<tr>
<th>Dose</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.9 ~ 1.1 E15)</td>
<td>(450 ~ 550 eV)</td>
</tr>
<tr>
<td>Sensitivity, S:</td>
<td>0.31</td>
</tr>
<tr>
<td>Detectability, D (%)</td>
<td>0.97</td>
</tr>
</tbody>
</table>
As-Implanted Capability: Implanter Signatures

\[^{11}\text{B}, \, 1 \times 10^{15} \text{ cm}^{-2}, \, 500 \text{ eV} \]

\[\text{B}_{10}\text{H}_{14}, \, 1 \times 10^{15} \text{ cm}^{-2}, \, 500 \text{ eV} \]

Channel Probe: Contour maps reveal within wafer non-uniformity in the as-implanted USJ wafer from a beam-line system.

Bulk Probe: Full wafer maps reveal within wafer non-uniformity in the as-implanted USJ wafer. Substrate features are also exposed.
Outline

- Principle of Operation
- PLi Implant and Anneal Metrology
 - As implanted study – dose and energy
 - Anneal process studies
 - Species effects
 - Annealer signatures
 - Laser annealer
 - Measurement precision
- Summary
Design of Experiment - Anneal

Box AA

<table>
<thead>
<tr>
<th>No.</th>
<th>Split</th>
<th>Activation</th>
<th>Type</th>
<th>Wafer ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>600C 1min (SPER)</td>
<td>P</td>
<td>23BKB272MM</td>
</tr>
<tr>
<td>12</td>
<td>Ge 10keV 5E14/cm² + B 0.5keV 1E15/cm²</td>
<td>1000C Spike only</td>
<td>P</td>
<td>23BKB092MM</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1000C Spike + FLA</td>
<td>P</td>
<td>23BKB116MM</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>900C Spike + FLA</td>
<td>P</td>
<td>23BKB114MM</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>FLA</td>
<td>P</td>
<td>23BKB112MM</td>
</tr>
<tr>
<td>8</td>
<td>As 3keV 1e15/cm²</td>
<td>1000C Spike only</td>
<td>P</td>
<td>23BKB176MM</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1000C Spike + FLA</td>
<td>P</td>
<td>23BKB108MM</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>900C Spike + FLA</td>
<td>P</td>
<td>23BKB173MM</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>FLA</td>
<td>P</td>
<td>23BKA066MM</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1000C Spike only</td>
<td>P</td>
<td>23BKA067MM</td>
</tr>
<tr>
<td>3</td>
<td>B 0.5keV 1E15/cm²</td>
<td>1000C Spike + FLA</td>
<td>P</td>
<td>23BKB269MM</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>900C Spike + FLA</td>
<td>P</td>
<td>23BKB270MM</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>FLA</td>
<td>P</td>
<td>23BKB271MM</td>
</tr>
</tbody>
</table>

Box AB

<table>
<thead>
<tr>
<th>No.</th>
<th>Split</th>
<th>Activation</th>
<th>Wafer ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>600C 60sec SPE</td>
<td>23BKB272MM</td>
</tr>
<tr>
<td>9</td>
<td>B18Hx</td>
<td>1000C spike only</td>
<td>23BKB092MM</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1000C spike + FLA</td>
<td>23BKB116MM</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>900C spike + FLA</td>
<td>23BKB114MM</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>FLA</td>
<td>23BKB112MM</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>600C 60sec SPE</td>
<td>23BKB272MM</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1000C spike only</td>
<td>23BKB092MM</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1000C spike + FLA</td>
<td>23BKB116MM</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>900C spike + FLA</td>
<td>23BKB114MM</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>FLA</td>
<td>23BKB112MM</td>
</tr>
</tbody>
</table>
Bulk Probe Results

B, 0.5 keV, 1.0×10^{15} cm$^{-2}$

Flash

900°C Spike + Flash

1000°C Spike + Flash

1000°C Spike

Predictive Metrics for the Nano World

SEMICON West 2007
Bulk Probe Results

Micromapping at X=0 and Y=75 mm; B, 0.5 keV, 1.0×10^{15} \text{ cm}^{-2}

Flash

250×250 \mu m^2

2000×2000 \mu m^2

900^\circ C Spike + Flash

1000^\circ C Spike + Flash

1000^\circ C Spike

nano\text{metrics}

Predictive Metrics for the Nano World

SEMICON West 2007
Bulk Probe Results

As, 3.0 keV, 1.0×10^{15} cm$^{-2}$

Flash

900ºC Spike + Flash

1000ºC Spike + Flash

1000ºC Spike

Predictive Metrics for the Nano World

SEMICON West 2007
Bulk Probe Results

Ge, 10.0 keV, 5.0×10^{14} cm$^{-2}$ + B, 0.5 keV, 1.0×10^{15} cm$^{-2}$
Bulk Probe Results

$B_{18}H_x$, 0.5 keV, $1.0 \times 10^{15} \text{ cm}^{-2}$ (equivalent)
Bulk Probe Results

Impact of implanted specie; Flash annealing

Boron

$B_{18}H_x$

Arsenic

Ge + Boron
Bulk Probe Results

Micromapping at X=0 and Y=75 mm;
Different species; 1000ºC Spike + Flash annealing

250x250 μm²

2000x2000 μm²

Boron
B₁₈Hₓ
Ge + Boron
Arsenic

Predictive Metrics for the Nano World

SEMICON West 2007
Numerical Data

Predictive Metrics for the Nano World

SEMICON West 2007
New vs. Old Heater Design Effects

New Heater

Old Heater

B with FLA

~ 11 units

PLi Units [a.u.]

Position [mm]

New Heater

Old Heater

SEMICON West 2007

Predictive Metrics for the Nano World
Suppression of Flash Lamp Variation Effects by Spike Annealing

Flash

Flash + Spike

B, 0.5 keV, 1.0×10^{15} cm^{-2}

![Graph showing suppression of flash and spike effects](image)

- Flash
- Flash + Spike

- Global 6.4%
- Local 0.8%
- Global 23.7%
- Local 2.1%
PLi Inspection - Damage Recovery

Macro-mapping + Micro-mapping

Spike

Macro-map of 200 mm USJ-implanted wafer showing large scale non-uniformity from spike anneal

Flash

Micro-map showing massive dislocation density from high temperature (1300°C) flash anneal

500 x 500 µm²
Outline

- Principle of Operation
- **PLi Implant and Anneal Metrology**
 - As implanted study – dose and energy
 - Anneal process studies
 - Species effects
 - Annealer signatures
 - **Laser annealer**
 - Measurement precision
- Summary
PLi Inspection: Laser 1 Anneal Signature

Laser Anneal Type 1: Correlation Between PLi and Laser Melt

High PLi Regions

Laser Melt Regions
PLi Inspection: Laser 2 Anneal Signature

Laser Anneal Type 2: stripping caused by overlapping

Micro-mapping

Macro-mapping

Beam Height 5.5 mm

9.69 PLi Units

10.46 PLi Units

0.41 mm overlap

Micro-map showing zoomed-in stripping caused by overlap region
Annealing Uniformity and Residual Damage

(a) SPE

D.U.~110

(b) Spike

D.U.~11

(c) Flash

D.U.~5

(d) Laser

D.U.~24

SPE anneal is uniform but it does not remove completely the damage. Spike, flash and laser anneals remove more damage, but exhibit higher non-uniformity than SPE.
Outline

- Principle of Operation
- PLi Implant and Anneal Metrology
 - As implanted study – dose and energy
 - Anneal process studies
 - Species effects
 - Annealer signatures
 - Laser annealer
- Measurement precision
- Summary
Damage Inspection - Full Wafer Map Repeatability

Boron, 1×10^{15} cm$^{-2}$, 500 eV, with FLASH annealing

Full Wafer Map Repeatability

- Mean: 54.698
- 1σ: 0.0285
- %: 0.052%
PLi Inspection - Micro Map Repeatability

SPC sample, un-implanted, 10 nm oxide passivated

Micromap Repeatability
Wafer ID: SPC
Mean: 1607 a.u.
σ: 0.285 a.u.
%: 0.018%
Outline

- Principle of Operation
- PLi Implant and Anneal Metrology
 - As implanted study – dose and energy
 - Anneal process studies
 - Species effects
 - Annealer signatures
 - Laser annealer
 - Measurement precision
- Summary
Summary

- Provided an overview of PLi technology
 - Optical set-up and interaction physics
- Demonstrated sensitivity of PLi to dose and energy variation
 - Variety of process conditions
- Data from several experiments indicates:
 - High temperature (1000ºC) Spike or high temperature Spike followed by Flash annealing are the most efficient ways of removing the post implantation damage
 - Flash annealing alone leads to relatively large global and local residual damage variation, while Spike combined with Flash effectively suppresses the variation
 - Flash signature clearly visible for all species studied
 - Annealer heater performance can be optimized with PLi technology
 - Of all species B18 shows best results for damage removal across all anneal methods, but the best removal is obtained with a 900ºC Spike + Flash annealing
Acknowledgements

- John Borland of JOB
- Andrzej Buczkowski, Zhiqiang Li, Dave Doyle of Nanometrics
Annealing Equipment Signatures

Spike
- Mean = 10.33 au
- $\sigma = 0.65\%$
- Mean = 9.14 au
 $\sigma = 0.54\%$

Laser
- Mean = 18.99 au
 $\sigma = 1.71\%$
- Mean = 36.65 au
 $\sigma = 4.85\%$

SPE
- Mean = 105.8 au
 $\sigma = 4.00\%$
- Mean = 117.5 au
 $\sigma = 4.10\%$
Residual Damage Uniformity Map

Spike Annealed

Sampling size: 6 × 6 mm²

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.11</td>
<td>0.69%</td>
</tr>
<tr>
<td>B</td>
<td>11.26</td>
<td>1.28%</td>
</tr>
<tr>
<td>C</td>
<td>10.40</td>
<td>0.65%</td>
</tr>
<tr>
<td>D</td>
<td>10.10</td>
<td>0.69%</td>
</tr>
<tr>
<td>E</td>
<td>9.43</td>
<td>2.025</td>
</tr>
</tbody>
</table>

Damage Level: Line Profile:
Residual Damage Uniformity Map

Flash Annealed

Damage Level: 3D

Sampling size: 6 × 6 mm²

<table>
<thead>
<tr>
<th></th>
<th>Damage [a.u.]</th>
<th>Residual Damage Uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>32.67</td>
<td>8.98%</td>
</tr>
<tr>
<td>B</td>
<td>24.70</td>
<td>5.03%</td>
</tr>
<tr>
<td>C</td>
<td>20.46</td>
<td>1.69%</td>
</tr>
<tr>
<td>D</td>
<td>18.86</td>
<td>1.07%</td>
</tr>
<tr>
<td>E</td>
<td>17.25</td>
<td>1.11%</td>
</tr>
<tr>
<td>F</td>
<td>8.09</td>
<td>3.66%</td>
</tr>
</tbody>
</table>

SEMICON West 2007
PLi of USJ Flash Anneal Residual Defectivity

700 Pre : 1250 Peak 700 Pre : 1300 Peak 750 Pre : 1300 Peak 750 Pre : 1350 Peak (750 Pre : 1300 Peak)

PL

Mean: 2.402 δ: 0.251%
Mean: 36.63 δ: 26.6%
Mean: 2.426 δ: 0.158%
Mean: 9.01 δ: 4.85%

SR

Mean: 28.53 δ: 4.69%
Mean: 11.78 δ: 2.87%
Mean: 9.01 δ: 4.85%
Mean: 55.05 δ: 14.8%
Mean: 36.63 δ: 26.6%

PAI 1×10^{15} Ge @ 30 keV
Boron 1×10^{15} @ 5 keV

High Damage [] Low Damage

Predictive Metrics for the Nano World

SEMICON West 2007