JTG Meeting 2007

USJ Formation and Metrology for sub-45nm Technologies

PULSION® The ion implant solution for sub 45nm

Laurent ROUX

ibs

IBS profile

Founded in 1987

Locations

- Headquarter and main facilities in Peynier, France
- Production plant in Scotland
- Offices : Paris, Grenoble, Dresden, Taipei

Technological know how

Plasma and ion beam

- Semiconductor doping
- Surface treatment
- Equipments design and manufacturing

Microelectronics Processing

Sensors and Power devices

Technological challenges

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	.90	78	68	59	52	45	40	36	32
Drain extension X _j (nm) for bulk MPU/ASIC [F]	11	9	7.5	7.5	7	6.5	5.8	4.5	
Maximum drain extension sheet resistance for bulk MPU/ASIC (NMOS) (1959) [G]	653	674	640	740	677	650	548	593	

Extract of ITRS 2005 roadmap

- New characterisations
- Process integration

Implantation challenge

Classical beam line implantation has difficulties to meet ITRS below 45 nm node

- low energy beam difficult to produce, transport and control
- 4 main alternative new solutions:
 - GILD : Gas Immersion Laser Doping
 - High mass molecule implantation
 - Very High Mass Cluster Implantation
 - Plasma Immersion Ion Implantation
- IBS choice : Plasma Immersion Ion Implantation (PIII)
 - No risk of energy contamination like in decel mode or molecular implant
 - Simultaneous implantation of the whole wafer
 - low density of the ion flow
 - low power density
 - no scanning required
 - 10 years IBS expertise in PIII for surface treatment

Doping requirements should be considered at the technological brick level:

- Junction activation without diffusion and high solubility level in order to meet low resistivity requirements
- Characterisation tools are at their limits (SIMS, 4pp, SRP, ...)

 IBS partner within European project with ST, QUIMONDA, NXP, FREESCALE, IMEC, LETI, FhG...

- NANOCMOS-45 nano-2004-2006
- SEA-NET 32 nano 2006 2008
- FOREMOST- 45 nano 2006 2008
- PULLNANO -22 nano- 2006-2009

IBS SOLUTION : PULSION®

Energy range

- Extremely low to medium range energy
- Substrate size
 - From samples, up to 300mm

Small footprint 4 to 7 m²

Low cost doping

PULSION® Characteristics

ICP source

- Source designed by IBS
 - Flexible plasma density from 10⁷ to 10¹⁰ cm⁻³
 - Work pressure from 10⁻⁵ to 10⁻²mbar
 - 2 polarization modes :Continuous or pulsed mode
- No contamination
 - No contact between metallic parts and plasma
- In situ plasma control / Dose reproducibility
 - Mass spectrometer
 - Langmuir probe

JTG 2007

Original concept of PULSION® Plasma Source / plasma analysis

Self designed ICP souce

- Easy ignition of low elements (H2)
- Wide range of working pressure (down to 5^E-5 mbar)
- No metallic contamination

Possible in situ Plasma diagnostic

thanks to timed resolved energy mass spectrometer (TREMS)

Original concept of PULSION® Polarisation modes

Exemple of BF3 PULSION® implantations from 100V to 5kV for USJ (IBS / LETI collaboration)

Laurent ROUX

JTG 2007

Original concept of PULSION® Polarisation modes

Mode 1 - « continuous » like

- Advantages
 - Easy to control acceleration voltage
 - Very simple and robust
 - Suited for low cost applications
- Drawback
 - Non compatible with insulating layers, defects after implant on insulating layer

Mode 2 - « pulsed » like

- During the plasma ignition, the power supply is inhibited
- Implantation during the beginning of pulse
- End of pulse, neutralisation by electrons from plasma

• = <u>no charge induced defects</u>

After implant (BF3 500V)

After implant (BF3 500V)

Metallic contamination

TXRF measurements on 200 mm wafers. PULSION BF $_3$ 500eV vs NV-8200P BF $_{2+}$ 3keV

Laurent ROUX

Metallic contamination

ToF-SIMS results

ibs

	BF3 im	plantation	Poforonco		
	Edge	Center	Releience		
Ni	1.7E+11	9.3E+10	<1.6E9		
Cu	3.4E+11	8.2E+10	1.5E+09		
AI	6.2E+10	3.9E+10	<3.8E7		
Sn	1.3E+10	1.0E+10	<1.7E9		
Fe	1.1E+10	5.5E+09	<8.0E8		
Cr	3.7E+09	3.4E+09	<2.3E8		
Mg	3.9E+09	2.5E+09	<9.7E7		
Na	3.3E+09	2.6E+09	6.0E+08		
In	3.1E+09	1.9E+09	2.9E+08		
Ti	2.4E+09	1.4E+09	<1.5E8		
K	5.5E+08	3.6E+08	<1.2E7		
Со	<1.4E9	1.7E+09	<1.4E9		
Ca	3.1E+08	2.1E+08	<3.6E7		
Li	4.8E+07	3.7E+07	<1.8E7		
Ag	1.2E+10	5.0E+09	8.0E+09		
CI	9.8E+11	1.1E+12	2.3E+12		
S	3.4E+12	4.6E+12	5.9E+12		
В	1.0E+14	9.0E+13	9.3E+12		
F	1.2E+12	1.2E+12	1.9E+11		

Homogeneity

Pb of native oxide masking (200mm wafers)

- Non uniform masking effect
- Very sensitive for low dose and ultra low energy
- Likely to disturb measurements

1% Contour Interval

PULSION BF3 500V, 1e14/cm²

5% Contour Interval

(IBS / QCsolution collaboration)

PULSION BF3 100eV 1E15

3% Contour Interval

PULSION BF3 500V, 1e15/cm²

1% Contour Interval

Laurent ROUX

USJ: Good Homogeneity As implanted characterisation: LEXFAB

- 200 mm wafer
- Pulsion BF3 500V (5nm)
- •Measurement repetability : 3.7%

- Edge effect observation
- Pb of native oxide masking
- ⇒Increase chuck diameter

⇒Deoxidation or Stabilized oxidation before implant

PULSION® Applications

Advanced microelectronics

- Ultra shallow junction for 45-32-22 nodes
- Trench doping, conformal doping
- Poly doping
- Gate dielectrics, high k

Nanoelectronics, Materials, Surface engineering

Low cost doping

- Solar cells : doping and hydrogenation
- Flat panels : doping and hydrogenation
- Power component : high dose doping

USJ: Implantation profiles Boron profiles (PULSION[®] BF3 20V to 2 kV)

Laurent ROUX

JTG 2007

USJ: Implantation profiles Xj = f(E) (BF3 1E15/cm²)

- X_J proportional to E for E> 500 eV
- SIMS saturation effect for E<100eV

Laurent ROUX

USJ: Low level of Defects

TEM after PULSION[®] BF3 500V 1E15/cm² (with SiO2 etching before implant.)

- Very small amount of defects is observed in the implanted layer

(IBS / CNRS CEMES collaboration)

Laurent ROUX

23

JTG 2007

PULSION + Annealing On going studies

- SPIKE Collaboration with CEA-Léti in FOREMOST
 - Sheet resistance and Xj still too high
 - Diffusion must be minimized (TED)

SPER

- Sheet resistance and junction depth still too high
- Effects of EOR on junction leakage still has to be investigated

LASER Collaboration with Marseille university :

Laurent ROUX

- Next step : reduce Xj by reducing PAI depth
- Try RTP annealing to dissolve defects and reduce junction leakage
- FLASH Collaboration with Toulouse University in Pullnano
 - Cocktail implants + Flash ⇒ results expected Q4-07

Annealing process	Xj (nm)	Rsq (ohms/sq)	l _L (A/cm)
Spike	24	1598	
SPER	14	1220	
LASER without PAI	30	593	1 ^E -7
LASER with PAI	23	561	1 ^E -2

Effect of PAI on boron profile in as-implanted condition

Effect of PAI on Boron profile

Thickness of amorphous layer for Ge+ 10 keV

Effect of acceleration voltage on boron profile after annealing

Effect of PULSION acceleration voltage on boron profile after LTP

Effect of laser fluence on boron profile after LTP

Boron SIMS Profile PULSION 1 kV WITHOUT PAI

USJ with PULSION and laser anneal PULSION® gives good results for realization of USJ WITHOUT PAI Activation threshold : 500 mJ/cm² • X_J = 30 nm • Rsq = 593 Ω/sq • I₁ = 1E-7 A/cm² WITH Ge PAI Activation threshold: 450mJ/cm² • X₁= 23 nm Rsq= 561 Ω/sq • But I₁ = 1E-2 A/cm²

To complete the study of PULSION® in the realization of USJ Adding different annealing process

Trench Doping with PULSION®

(with courtesy of LMP / ST) (S. NIZOU, V. VERVISH, H. ETIENNE..., IIT 2006 P115)

3D doping with PULSION®

SEM photo of penguin-like structures created by femtosecond laser (top left corner is a picture of a real penguin colony in Antartica, photo by G. DARGAUD www.gdargaud.net) (with courtesy of LP3)

LBIC scan maps showing the increase of the photocurrent in the laser treated zones.

Solar cell doping

- Same diffusion lengh as classical solar cell \Rightarrow no metal contamination
- Higher sensitivity in low wavelength range

(V. VERVISCH, D. BARAKEL, H. ETIENNE..., IIT 2006 P248)

Hydrogenation

SIMS profile of Hydrogen implantation (5 e¹⁶ cm⁻² - 25 kV)

Laurent ROUX

JTG 2007

New industrial equipment for low energy implantation

- Designed for high reliability and low cost of ownership
- Flexible to allow development of new applications for different fields
- 200 / 300 mm tool easily scalable to 450 mm

Successful process tests

- USJ doping
- Trench and 3D doping
- Solar cells : doping and hydrogenation
- Power components : high dose doping

Contact : pulsion@ion-beam-services.fr

The Total Ion Implantation Solution

ibs

A global service dedicated to customer support in the field of ion implantation»

Contacts :

pulsion@ion-beam-services.fr