Flash Annealing For USJ Activation

Jeff Gelpey Mattson Technology Canada

July 19, 2007

Contents

- Introduction
- Acknowledgements
- Requirements/Applications
- Mattson's Millios[™] fRTP[™] Concept
- Process Results
 - Sheet Resistance/Junction Depth
 - Device
 - Advanced Doping
 - Combination with Spike Annealing
- Summary

Acknowledgements

- This presentation is drawn largely from papers presented at IWJT 2007, INSIGHT 2007 and RTP 2006
- The co-authors on those papers are gratefully acknowledged:
 - Steve McCoy, Dave Camm, Greg Stuart and Jason Chan of MTC
 - Wilfried Lerch, Silke Paul and Juergen Niess of Mattson Dornstadt
 - Paul Timans of Mattson Fremont
 - A. Mineji and S. Shishiguchi of NECEL
 - K. Sekar and W. Krull of SemEquip
 - F. Cristiano and F. Severac of LAAS/CNRS University of Toulouse, France
 - P. Pichler and A. Martinez of Fraunhofer-IISB, Germany

Introduction

- Shallow, highly activated, abrupt junctions are required for future scaled devices
- Control of defects and junction leakage will also be important, especially for low power applications
- Millisecond annealing appears to enable advanced junctions
- Conventional beamline implants using atomic sources
 may be a limiting factor for USJ
- It is very expensive and time consuming to generate data for all doping and annealing conditions, so a useable process TCAD approach can be helpful
 - Existing simulations are not sufficient for ms anneal

Requirements and Applications

- The "traditional" applications for ms annealing have been polysilicon activation and SDE activation
 - For poly, high activation with a high carrier concentration near the poly/Si interface is needed to reduce poly depletion
 - For SDE, high activation, control of defects and diffusion and high abruptness are needed
 - Some lateral diffusion is needed to obtain good drive (not "diffusionless")
 - The specific requirements are determined by the device/circuit
- There may be many other ms annealing applications (silicides, stress control, dielectrics, etc.)

Mattson Millios

Typical Vortek Flash Profile 1400 1300 1300 1200 1100 1200 temperature (C) 1000 1100 900 1000 800 900 700 59.83 59.84 59.85 59.86 59.87 800 700 - Top of Wafer Bottom of Wafer 600 60.5 63.0 59.0 59.5 60.0 61.0 61.5 62.0 62.5 time (seconds)

Intermediate Temperature (T_i)

Comparison Flash to Spike for BF₂

Extremely shallow junction for FLASH-annealed BF₂ implanted wafers

Motivation for Spike+Flash

- Flash annealing produces highly activated junctions with low sheet resistance and limited diffusion
- Conventional spike annealing at lower peak temperature can be used to produce a certain amount of gate under-diffusion of the lightly doped drain region and reduce extended defects

Investigation of a combination of spike and flash annealing to achieve the desired levels of dopant diffusion and activation

Experimental Details

- Implant Conditions
 - Ge⁺ 30 keV $1 \cdot 10^{15}$ cm⁻² preamorphization + B⁺ 500 eV $1 \cdot 10^{15}$ cm⁻²
 - B⁺ 500 eV 1.10¹⁵ cm⁻²
 - BF₂⁺ 1.1 keV 1.10¹⁵ cm⁻²
 - As⁺ 1 keV 1.10¹⁵ cm⁻²
- Spike Anneal in Mattson 3000 Plus RTP System
 - Prestabilization at 650 °C for 10 s
 - Peak temperature 1000 °C
 - 100 ppm oxygen in nitrogen ambient for boron implants and 10% oxygen in nitrogen for arsenic
- Flash Anneal in Mattson fRTP[™] System
 - Intermediate temperature 750 °C
 - Peak temperature 1300 °C
 - Nitrogen ambient
- Analysis
 - Four-point probe sheet resistance measurement KLA-Tencor RS100
 - Hall effect measurement Accent HL5500
 - SIMS quadrupole CAMECA SIMS 4600
 - TEM JEOL 2100-HC with weak beam dark field technique

AVS Junction Technology Meeting

mattson

Temperature Time Profiles

Combined Spike+Flash Anneal

July 19, 2007

Diffusion Length Comparison

- B implants in a-Si show largest diffusion length due to dissolution of defects, hence increased release of interstitials and boron diffusion
- The subsequent flash anneal is nearly diffusion-less
- For arsenic implant, similar diffusion length is seen for all processes except the flash anneal only. The spike dominates the thermal budget.

July 19, 2007AVS Junction Technology Meeting

SIMS Results of Boron in c-Si

Junction Depth [nm]

- Kink at around 6 nm separates immobile region from diffusing tail
- Reduction of peak concentration of immobile region from spike to spike + flash shows clustered boron dissolves and causes profile broadening

July 19, 2007

Sheet Resistance and Dose: Boron in c-Si

Highest sheet resistance is always reached with the spike anneal, i.e. the sheet resistance of the wafers annealed with either spike + flash, flash or flash + spike is around 40% lower, due to higher solid solubility at peak temperature of 1300 °C and/or deeper diffusion
 July 19, 2007

Sheet Resistance and Dose: Boron in α -Si(Ge)

- Similar picture as for boron in c-Si
- Certain amount of outdiffusion is seen for all anneals but for flash anneal and flash + spike anneal the outdiffusion is enhanced and the as-implanted dose is reduced by ~20-30%

July 19, 2007

TEM Images of Boron Doped α -Si(Ge) Samples

TEM WBDF image g=[422] after 1300 °C flash TEM WBDF image g=[422] after 1000 °C spike + 1300 °C flash

Due to lower thermal budget after a 1300 °C flash anneal the defects have not yet evolved to the more stable configuration as after spike + flash anneal.

Defect evolution: W. Lerch, S. Paul, J. Niess, S. McCoy, J. Gelpey, F. Cristiano, S. Boninelli, O. Marcelot, P.F. Fazzini, R. Duffy, *ECS Transactions* 3(2) (2006) 77-84

July 19, 2007

TEM Images of Boron Doped c-Si Samples

TEM WBDF image g=[422] after 1300 °C flash

For boron implant in c-Si the defect density after flash and spike + flash is below TEM-WBDF detection limit.

Defect evolution: W. Lerch, S. Paul, J. Niess, S. McCoy, J. Gelpey, F. Cristiano, S. Boninelli, O. Marcelot, P.F. Fazzini, R. Duffy, *ECS Transactions* 3(2) (2006) 77-84

July 19, 2007

B-Simulation of Spike and Spike + Flash Anneal

- Better activation of the spike + flash thermal sequence due to dissolution of boron interstitial clusters visible in electrical boron concentration.
- Hall effect dose and simulated electrical active dose correspond within 10% July 19, 2007 AVS Junction Technology Meeting

Sheet Resistance and Dose: Arsenic in c-Si

• For arsenic the lowest sheet resistance by far is seen with a combination of spike + flash anneal, i.e. the sheet resistance is decreased by 35% with only slightly increased junction depth

July 19, 2007

TEM Images of Arsenic Doped c-Si Samples

TEM WBDF image g=[422] after 1300 °C flash TEM WBDF image g=[422] after 1000 °C spike + 1300 °C flash

For arsenic implants in c-Si the defect density after flash and spike + flash is below TEM-WBDF detection limit.

July 19, 2007

As-Simulation of Spike and Spike+Flash Anneal in c-Si

Junction depth (nm)

The simulations fit reasonably well and the extracted electrically active doses deduced from simulations correspond to the measured Hall-Effect values.

Model details: A. Martinez-Limia, C. Steen, P. Pichler, N. Gupta, W. Windl, S. Paul, W. Lerch, S. Paul, accepted for *SISPAD* 2007 July 19, 2007 AVS Junction Technology Meeting

nMOS Transistor Results

Threshold voltage vs. gate length shows no shift with combined annealing methods compared to spike Important to note: improved drive current is visible without significant change in threshold voltage

Advanced Doping

- Conventional Beamline implantation is reaching its limits
- Plasma doping and beamline doping with molecular or "cluster" ions offers great potential for future nodes

B₂H₆ Plasma Doping with He PA Results

SIMS profiles before and after FLA. Doping process was He-PA +PD (bias: 60 V)

Sasaki et. al. 2004 VLSI SymposiumJuly 19, 2007AVS Junction Technology Meeting

SemEquip ClusterIon[™] Results

TEM Cross-Sections of Flash Annealed Samples

Flash annealed B₁₈H₂₂ samples show no extended defects unlike B+PAI samples

July 19, 2007

Summary and Conclusions

- The individual advantages of various anneal schemes are demonstrated for different nMOS and pMOS implant conditions regarding activation, electrically active dose, junction depth, defect configuration
- With the spike + flash anneal combination the ordinary diffusion can be limited by the spike anneal whereas the subsequent diffusion-less flash anneal independently ensures the high degree of dopant activation
- Only by a spike + flash anneal combination is a similar sheet resistance value for the arsenic and the boron implant achieved even though the nMOS junction is much shallower

Summary and Conclusions

- Simulations for boron and arsenic diffusion/activation show reasonable agreement for the individual processes as also for the combined spike + flash process—more work ongoing
- The combination of spike + flash anneals has been shown to improve the transistor drive current significantly without undesirable shifts in the other transistor characteristics
- Cluster implants combined with flash annealing show excellent Rs/Xj performance and clean TEMs
- Although in this study the spike and flash annealing were performed in different tools, a combination of spike + flash can be easily run in the Mattson Millios fRTP system as a combo anneal

