SemEquip

West Coast Junction Technology Group Semicon West — San Francisco July 14, 2005

Tom Horsky, Chief Technology Officer

Company Mission

- SemEquip provides innovative technologies that enable the use of cluster beam ion implantation in manufacturing the world's most advanced IC's at the lowest cost and highest throughput.
 - We do this by enabling the rapid commercialization of cluster implantation in conventional high current and medium current implanter platforms.

Why Cluster Implantation?

- 18 dopant atoms per cluster
- Increases effective dose rate by 18X
- Extract and transport at 20X higher energy
- Reduces net current to wafer by 18X (reduced charging)
- Deceleration is *not* required, eliminating energy contamination
- Enables cost-effective low energy, high dose Implants

Is process equivalent to

(+

What implants can be done with Clusters?

• $B_{18}H_{22}$, $B_{10}H_{14}$ and As_4 can be used for USJ n+ and p+:

- Source/Drain Extensions
- Deep Source/Drains
- Poly Gate

ClusterBoron[™]

SemEquip Products

ClusterIon[®] Source
 ClusterIon[®] Universal Ion Source[™]
 B₁₈H₂₂ and B₁₀H₁₄ (distributed by ATMI)
 Custom engineered systems

Universal Ion Source[™]

Ion Species	Analyzed Beam (emA)
$B_{18}H_{22}^{+}$	1.0
$B_{10}H_{14}^{+}$	1.0
B^+	8.0
B ⁺⁺	0.25
BF ₂ ⁺	10
P ⁺	10
P ⁺⁺	1.0
P ⁺⁺⁺	0.25
P_2^+	1.0
P4 ⁺	1.0
As ⁺	10
As ₂ ⁺	1.0
As4 ⁺	1.0

SemEquip

Isotopically Enriched ¹¹B₁₈H₂₂

20 keV ¹¹B₁₈H₂₂

B₁₈H₂₂ Mass Spectrum Passing 15amu

SemEquip

Multiple Mass-Multiple Energy Analysis

Simulation

- 500 eV Equivalent Energy
- 1x10¹⁵ B/cm²
- Assume Gaussian Profiles
- Range and Straggle from SRIM
 - Linear Fit Over a few Hundred eV
 - Used Linear Regression to Calculate R_{p} and ΔR_{p}
- Used Measured & Calculated Distribution Functions (Binomial/Hydrogen/Mass Spectrum)
- Output States of the state o
- The Total distribution is the Sum of the 30 Mass Specific Depth Distributions
- Compare the Total Distribution to a Monomer Implant Distribution

Universal Ion Source[™] B₁₈H_X⁺ Current

New n-type Cluster: As₄⁺

Phosphorus Mass Spectrum

Arsenic Mass Spectrum

SemEquip

Impact on HC Implanters

- Enables boron-equivalent drift currents of between 1-20 mA from 100 eV to 1.4 keV
- Provides very good spatial uniformity, angle control and small divergence even at sub-keV energies
- Maximum energy limitation can be ameliorated by increasing mass-energy product of analyzer magnet, or by adding a post-accel capability:
 - Minimal engineering since most HC implanters have a decel lens
 - Tests indicate very little high-energy contamination after post-accel
- Deceleration is also viable with clusters
 - Tests indicate level of energy contamination dependent on beam optics, not borohydride properties

ClusterIon[®] Currents on SemEquip HC Injector

21

Impact on Medium Current Implanters

- Expands application space to high dose, low energy (S/D Ext, Halo, S/D)
- Enables under-the-gate USJ implants at high tilt
- Leverages the superior implant control which has always been a hallmark of MC Implanters
 - Single-wafer process
 - High tilt platten
 - Excellent angle control
 - Excellent energy purity
 - Large dose and energy range
- Magnetic rigidity of B₁₈H₂₂ and As₄ not an issue since MC implanters routinely operate in Accel & Decel mode

Reduced space charge with borane molecules results in beam size improvement – experimental evidence on MC Implanter

Lower space charge can result in a much narrower beam profile at the wafer

A smaller beam can:

Increase beam utilization efficiency on multi-wafer and scanned platforms

SemEquip

10 keV B₁₈H_x⁺ Angular Profile on MC Implanter

Process Benefits 1

- ClusterIon process is regular ion implantation
 - Dosimetry is based on counting charged ions
 - Implanted ions are mass analyzed
 - Energy of implanted dopant is well defined
 - Excellent contamination/particle control
- Improved annealing behavior
 - Damage structure is different with cluster implantation
 - Implants with ClusterBoron ions exhibit self-amorphization
 - Data show that junctions made with ClusterBoron
 - Are <u>shallower</u> compared with monomer implants
 - Have same dopant activation (sheet resistance) as B

SemEquip

Process Benefits 2

- Reduced angular spread in the ion beam
 - ClusterIon source has very low emittance
 - Angle errors due to low energy beam space charge blow-up are greatly reduced due to increased transport energy and reduced space charge in the beam
- Reduced wafer charging
 - Charge per boron dopant atom is 18x less

Device Data Review: Fujitsu

 Very early investigator of clusters for USJ
 We will focus on recent results from IWJT2005

Beam Blow-up at Low Energies Fujitsu, IWJT2005

Beam Divergence Angle and Beam size

Fujitsu, IWJT2005

B₁₀H_x⁺ beam is much smaller divergence angle and beam size than low energy B⁺

Transistor Impact by Beam divergence

V_{th} Fluctuations Due to Beam Divergence Fujitsu, IWJT2005

14% Improved Vth fluctuations,

that will be more pronounced in 300mm wafers

Device Data Review: Renesas

- Devices fabricated at Renesas, Itami, Japan
- ClusterBoron implant used for PMOS
 Drain Extension
- ClusterBoron implant performed on SemEquip demo tool: GSD112
 - Results show ClusterBoron as good or better than the Process of Record
 - Results presented at IIT 2004 & IWJT 2005

STI formation
Gate oxidation
Gate patterning
SDE implantation B⁺ or B₁₈Hx
Spacer formation
Deep S/D implantation
Spike annealing
Silicidation

TEM of Self Amorphization with B₁₈H₂₂

SIMS 500eV ClusterBoron vs. B⁺

Steeper and Shallower profile achieved by Self-Amorphization

Renesas, IIT2004 & IWJT2005

SIMS 200eV ClusterBoron vs. B

SemEquip

Junction Leakage Current

Renesas, IWJT2005

No Adverse effects in both Si Crystal junctions and Gate oxide edge

Gate Oxide and Hot Carrier Reliability

Renesas, IWJT2005

No degradation found in PMOS reliability by hydrogen in B₁₈H₂₂

Hydrogen Profile

Renesas, IWJT2005

Hydrogen completely diffuses out at annealing

Junction Depth & Sheet Resistance

Renesas, IIT2004

SemEquip

pMOSFET Transistor Characteristics

Renesas, IIT2004

SemEquip

Summary

- The use of B₁₈H₂₂ and B₁₀H₁₄ in conventional implanters dramatically increases throughput for p+ USJ process
 - Reduces cost per implanted wafer
 - Dramatically improves beam quality at wafer
 - Reduces Vth variation due to non-uniform device shadowing effects caused by poor beam angular profiles
 - Self-amorphization obviates the need for the pre-amorphization implant, further reducing processing costs
- ClusterIon[®] technology is fully compatible with existing HC and MC tool architectures
 - Front end process remains unchanged
 - Enables MC platforms to "cross over" to HC recipes as single-wafer HC implanter
 - New Universal Ion Source[™] delivers ClusterBoron[™] and As₄ process as well as traditional HC and MC beams

