-901010010101010101 **Flash Lamp Annealing** J. C. Gelpey, S. M. McCoy, D. M. Camm, G. Stuart Mattson Technology Canada Inc., 605 W Kent Ave, Vancouver, Canada, V6P 6T7 Mattferied Lerch

NO

Outline

- Motivation
- Flash Lamp Annealing Overview
- Other Alternatives
- Process Results
- Work in process
- Summary and Conclusions

Motivation

- Advanced devices require junction that are:
 - Highly activated
 - Abrupt
 - Shallow
 - Low leakage
- The process must also be manufacturable
 - Reasonable throughput and COO
 - Good process control
 - Minimal integration issues
- Milli-second Annealing appears to meet these requirements

Why ms-annealing?

- RTP times have been getting shorter (soak anneals ~10s, spike anneals ~1s), but these techniques heat the entire thickness of the wafer, so there is a practical limit on reduction of thermal budget.
- Laser annealing times have been getting longer (melt LTP in the ns to µs range), but these techniques have shown difficult integration issues.
- ms annealing by either flash lamps or lasers seems to hit the "sweet spot"

Evolution of Temperature Profiles

Review of Anneal Types

How Does ms Annealing Work?

- The thermal diffusion time constant of a wafer (from front to back) is on the order of 10-20ms.
- If heating is applied for longer than this, the front and back will be at essentially the same temperature.
- If heating is applied for less than the diffusion time constant, a large thermal gradient can be generated (if heating is from one side).
- Since only a small volume of the wafer is heated, the rest of the wafer acts as a very efficient heat sink and very rapid cooling of the front surface can be achieved.

Thermal Profile in ms Annealing

Front and back side temperature as a function of time in flash lamp annealing (modeled)

Evolution of temperature pulse in flash lamp annealing

This is a 1 dimensional effect in flash lamp annealing, but 3 D in laser processes

Terminology

Flash Lamp Annealing Approaches

- Multiple flash lamps required to achieve desired temperature jumps
 - Either many conventional Xe flash lamps or a few water-wall arc flash lamps
- Some sort of pre-heating needed to raise the bulk temperature
 - Either hotplate or backside lamp heating (similar to conventional RTP)

Flash Lamp Annealing Players

- Mattson
 - Water-wall Ar arc lamps for both bulk heating and flash lamps
- WaferMasters
 - Xe arc lamps for flash, hotplate used for pre-heat
- DNS
 - Xe arc lamps for flash, hotplate used for pre-heat
- Each has unique preferences for pre-heat profile, temperature ranges and flash profiles

Temperature-Time Radiometer Data

Vortek – High Intensity Arc Lamp

- Patented water wall technology
- High pressure argon with fast time response

Comparison c/w vs. flash spectrum

- c/w spectrum constant over wide current range, line dominated
- Flash spectrum timeintegrated through flash, strong increase in UV, Ar+ lines appear
- UV cut-off dominated by quartz envelope

Searching for applications... (2)

Flash Uniformity

Camera image of 600°C jump from Ti of 700°C (frame just prior to jump minus frame just after jump)

Process Results

- Two primary applications currently
 - Poly activation
 - Improved activation of doped poly to reduce poly depletion—can gain 0.5-2Å in physical gate dielectric thickness
 - Somewhat easier process to integrate and should be in production in several fabs soon
 - USJ anneal for SDE and HALO
 - Improved activation of SDE and HALO implants to reduce SCE, improve I_{on}
 - □ Some integration work must be done

Impact of poly-Si Activation on CET

Poly Activation

ms annealing shows improvement in poly depletion of ~1Å
 Improvement in both p- and n-doped polysilicon

Adachi, et. al., VLSI Symoosium 2005

BF₂ Process Results

fRTP shows significant improvement compared to best Spike RTP data. **~3 technology node extension.**

Comparison FLASH to Spike for BF₂

Extremely shallow junction for FLASH-annealed BF₂ implanted wafers

Variation of fRTP Peak Temperature

Diffusion-less process with increase in electrically active dose

TEM Analysis of B in Ge pre-amorphized Si

Weak beam dark field plan-view micrographs

Évolution of defects, corresponding to Ostwald ripening process No complete dissolution of defects in the crystal

Electrical parameters for B in amorphous Si

Quality of crystal improve, (dissolution of EOR)

Variation of fRTP Peak Temperature

B in crystalline Silicon

Electrical parameters for B in crystalline Si

Isochronal (t=30 s) post-annealing for Boron Junctions in α - and c-Silicon

- Flash and SPEG annealed junctions are "electrically" stable for temperatures up to 750°C
- Dopant deactivation is observed for >750°C
- Dopant reactivation is observed for T>900°C

Leakage as a function of doping and anneal

To optimize leakage, must have deep enough PAI and flash superior to SPE or spike

B₂H₆ Plasma Doping with He PA Results

Sasaki et. al. 2004 VLSI Symposium

B₂H₆ Plasma Doping with He PA Results

Relationship between Rs and Xj for this work and reported works using FLA.

Sasaki et. al. 2004 VLSI Symposium

Strained SiGe

- Flash shows minimal and balanced diffusion of B and As in SiGe
- Minimal Ge updiffusion
- No relaxation of strain measurable after flash processing
 <u>Strain Retention – Micro-Raman</u>

- No strain relaxation with fRTA.
- Peak shift towards lower wave number > additional strain?
- Peak Shift towards lower Wave numbers due to Ge diffusion (Sugii et al., JAP, 89, 2002).
 However, fRTA no Ge up-diffusion!
- fRTA > large temperature gradient through the wafer thickness of the wafer > additional stresses.
- Further understanding of wafer stresses during fRTA required.

P. Kohlietal.

ECS Meet, Oct 8, 2004

Kohli, et. al. ECS 2004, Honolulu

Potential Challenges

- Pattern Effect
 - Even with broad spectral bandwidth and wide angular variation, there could be some pattern effect
 - We have not observed any pattern effect—so far
 - Can be solved with absorber or anti-reflection layers or influenced by pulse width

SIMS depth profiles for B for various design-scale cells. Pattern pitch is indicated by the relation that becomes small in the order of pattern type A, B, and C (A>B>C)

Ito, et. al.. IWJT 2005

More Challenges

- Stress
 - Stress induced by the thermal profile can generate defects in the wafer or even fracture the wafer
 - Can be solved by reducing pattern induced non-uniformities on a local scale and by properly supporting the wafer on a global scale
- High Cost
 - Flash tools are far more complex than conventional RTP tools and cost significantly more
 - The improvement in device performance has to justify the additional cost
 - As more tools are made, costs may be brought down

Work to be Done

- Detailed examination of As and P
 - We still don't understand all of the physics
 - Measurements are difficult
- Additional work on SOI and stained silicon
- More device work
 - Good X_j/R_s results do not necessarily translate into improved transistor performance
 - More work is needed to optimize devices (not a simple plug in process)

Summary and Conclusions

- ms annealing has been demonstrated to deliver shallow, highly active P- and N-type junctions meeting the 45nm ITRS requirements and beyond
- Poly depletion is reduced on both n- and p-type polysilicon
- Boron flash activation is stable with subsequent processing
- Flash lamp annealing is a manufacturable approach for USJ formation
- First application may be poly activation
- Device results have been obtained, but more are needed to understand integration issues

