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Motivation

= Advanced devices require junction that are:
. _ Highly activated

~ Abrupt

~ Shallow

: ~ Low leakage

= The process must also be manufacturable

' ~ Reasonable throughput and COO

~ Good process control

~ Minimal integration issues

= Milli-second Annealing appears to meet these
: requirements
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Why ms-annealing?

= RTP times have been getting shorter (soak anneals ~10s, spike
anneals ~1s), but these techniques heat the entire thickness of
the wafer, so there is a practical limit on reduction of thermal
budget.

= Laser annealing times have been getting longer (melt LTP in the
ns to us range), but these techniques have shown difficult
Integration issues.

= ms annealing by either flash lamps or lasers seems to hit the

“sweet spot”
LTP ms annealing spike RTP soak RTP furnace
ns ms 1s 10s 10%s

| = - |
mattson
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Evolution of Temperature Profiles
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Review of Anneal Types

Spike

Impulse

Laser Melt

Flash Assist
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Wafer response similar to
heating source.
Characterized by a rounded
thermal profile.

Heat source is faster than the
wafer but bulk is kept
relatively uniform. Thermal
profile is peaked.

Heat source acts much faster
than the wafer. Only surface
layer is heated. Thermal
profile is sharply peaked.

Initial bulk heating as
Impulse, augmented by flash
for surface annealing over
entire wafer
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How Does ms Annealing Work?

= The thermal diffusion time constant of a wafer (from
: front to back) is on the order of 10-20ms.

= If heating is applied for longer than this, the front and
' back will be at essentially the same temperature.

= If heating is applied for less than the diffusion time
: constant, a large thermal gradient can be generated
(if heating is from one side).

. m Since only a small volume of the wafer is heated, the
: rest of the wafer acts as a very efficient heat sink and
very rapid cooling of the front surface can be
achieved.

mattson
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Thermal Profile in ms Annealing
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This is a 1 dimensional effect in flash lamp annealing, but 3 D in laser processes
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Terminolo

Fast ramp by

flash heating Rapid cooling by

thermal
\ / conduction to bulk

T

T | Radiative
_ Moling of wafer
Bulk heating

of wafer ——

t

Temperature profile of device layer shown
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Flash Lamp Annealing Approaches

= Multiple flash lamps required to achieve desired temperature
jumps
~ Either many conventional Xe flash lamps or a few water-wall
arc flash lamps
= Some sort of pre-heating needed to raise the bulk temperature

— Either hotplate or backside lamp heating (similar to
conventional RTP)

Reflector

/OOOOOOOOOOOOOOOOOOOOOOO OOOOOOO\

Vortek Arc | Window |
Flash
O O O O Lamps Wafer
Hotplate
wafer
Hot Device
Side
Colder Back
©_ Vortek Arc Lamp Side matum
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Flash Lamp Annealing Players

= Mattson

~ Water-wall Ar arc lamps for both bulk heating and
flash lamps

= WaferMasters

- Xe arc lamps for flash, hotplate used for pre-heat
m DNS
: - Xe arc lamps for flash, hotplate used for pre-heat

= Each has unique preferences for pre-heat profile,
: temperature ranges and flash profiles

mattson
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Temperature-Time Radiometer Data
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Vortek High Intensity Arc Lamp

+ Patented water wall technology

+ High pressure argon with fast time
response
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Comparison c/w vs. flash spectrum
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c/w spectrum constant
over wide current
range, line dominated

Flash spectrum time-
integrated through
flash, strong increase in
UV, Ar+ lines appear

UV cut-off dominated
by quartz envelope
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Searching for applications... (2)
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Flash Uniformity

Camera image of 600°C jump from Ti of 700°C
(frame just prior to jump minus frame just after jump)
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Process Results

= Two primary applications currently
~ Poly activation

o Improved activation of doped poly to reduce
poly depletion—can gain 0.5-2A in physical gate
dielectric thickness

o Somewhat easier process to integrate and should
be in production in several fabs soon

~ USJ anneal for SDE and HALO

o Improved activation of SDE and HALO implants to
reduce SCE, improve |,

0 Some integration work must be done

mattson
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Impact of poly-Si Activation on CET
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Poly Activation

= ms annealing shows improvement in poly depletion of ~1A
= Improvement in both p- and n-doped polysilicon
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poly depletron wtibized by LSA was etimated to O 1 nm

Adachi, et. al., VLSI Symoosium 2005
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BF, Process Results
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fRTP shows significant improvement compared to best Spike RTP data.
~3 technology node extension.
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Comparison FLASH to Spike for BF,
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Variation of fRTP Peak Temperature

B In Ge pre-amorphized Silicon  (Ge 30keV, 1E15) B: 500eV, 1E15
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TEM Analysis of B In Ge pre-amorphized Si

700/1325°C, 0.8 ms_( D)

Weak beam dark field plan-view micrographs

Evolution of defects, corresponding to Ostwald ripening process m,'
No complete dissolution of defecfs.in, the grystal ma




Electrical parameters for B in amorphous Si
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Variation of fRTP Peak Temperature

B in crystalline Silicon
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Electrical parameters for B in crystalline Si
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Isochronal (t=30 s) post-annealing for Boron
Junctions in o- and c-Silicon
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* Flash and SPEG annealed junctions are “electrically” stable
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» Dopant deactivation is observed for >750°C
» Dopant reactivation is observed for T>900°C mattson

WCJT July 14, 2005



Leakage as a function of doping and anneal
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To optimize leakage, must have deep enough PAI and flash superior to SPE or spike
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B,H; Plasma Doping with He PA Results
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ESIMS profiles before and after FLA. Doping process was He-PA +PD (bias: 60 V)

Sasaki et. al. 2004 VLSI Symposium
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B,H; Plasma Doping with He PA Results
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Strained SiGe

m Flash shows minimal and balanced diffusion of B and

As in SiGe
= Minimal Ge updiffusion

m No relaxation of strain measurable after flash

processing Strain Retention - Micro-Raman

No Implant -1105C Flash &nneal

Before Flash-Arrealrg | §14.4

* No strain relaxation with fRTA.

* Peak shift towards lower wave number > additional strain?

* Peak Shift towards lower Wave numbers due to Ge diffusion (
However, fRTA no Ge up-diffusion!

* fRTA > large temperature gradient through the wafer thicknes

stresses.

Sugii et al.. JAP. 89, 2002).

.5 of the wafer > additional

» Further understanding of wafer strezses dunng fRTA requured,

P.Kehb =i 3. ECS Meet, D B, 200

Kohli, et. al. ECS 2004, Honolulu
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Potential Challenges

m Pattern Effect

~ Even with broad spectral bandwidth and wide angular variation,
there could be some pattern effect

~ We have not observed any pattern effect—so far
~ Can be solved with absorber or anti-reflection layers or influenced by

pulse width
22
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SIMS depth profiles for B for various design-scale cells. Pattern pitch is indicated
by the relation that becomes small in the order of pattern type A, B, and C (A>B>C)

Ito, et. al.. IWJT 2005
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More Challenges

m Stress

~ Stress induced by the thermal profile can generate defects in
the wafer or even fracture the wafer

~ Can be solved by reducing pattern induced non-uniformities
on a local scale and by properly supporting the wafer on a
global scale

= High Cost

~ Flash tools are far more complex than conventional RTP tools
and cost significantly more

~ The improvement in device performance has to justify the
additional cost

~ As more tools are made, costs may be brought down

mattson
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Work to be Done

. = Detailed examination of As and P

' ~ We still don’t understand all of the physics
: - Measurements are difficult

= Additional work on SOI and stained silicon

= More device work

- Good X;/R, results do not necessarily translate into
Improved transistor performance

- More work is needed to optimize devices (not a
simple plug In process)

mattson
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Summary and Conclusions

= ms annealing has been demonstrated to deliver shallow,
highly active P- and N-type junctions meeting the 45nm ITRS
requirements and beyond

m Poly depletion is reduced on both n- and p-type polysilicon
= Boron flash activation is stable with subsequent processing

m Flash lamp annealing is a manufacturable approach for USJ
formation

= First application may be poly activation

m Device results have been obtained, but more are needed to
understand integration issues

mattson
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