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Motivation

Advanced devices require junction that are:
— Highly activated
— Abrupt
— Shallow
— Low leakage

The process must also be manufacturable
— Reasonable throughput and COO
— Good process control
— Minimal integration issues

Milli-second Annealing appears to meet these 
requirements
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Why ms-annealing?

RTP times have been getting shorter (soak anneals ~10s, spike 
anneals ~1s), but these techniques heat the entire thickness of 
the wafer, so there is a practical limit on reduction of thermal
budget.
Laser annealing times have been getting longer (melt LTP in the 
ns to µs range), but these techniques have shown difficult 
integration issues.
ms annealing by either flash lamps or lasers seems to hit the 
“sweet spot”

LTP                                                             ms annealing          spike RTP          soak RTP          furnace

ns                                                              ms                             1s                   10s             103s
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Evolution of Temperature Profiles

1275°C, 1300°C, 1325°C fRTP(106 K/s RU,
                                      170 K/s RD at 1100°C)

1050°C Spike(250 K/s RU, 
            80 K/s RD,120 K/s RD)

1100°C Spike(300 K/s RU, 
             80 K/s RD, 
             120 K/s RD)
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Review of Anneal Types
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How Does ms Annealing Work?

The thermal diffusion time constant of a wafer (from 
front to back) is on the order of 10-20ms.
If heating is applied for longer than this, the front and 
back will be at essentially the same temperature.
If heating is applied for less than the diffusion time 
constant, a large thermal gradient can be generated 
(if heating is from one side).
Since only a small volume of the wafer is heated, the 
rest of the wafer acts as a very efficient heat sink and 
very rapid cooling of the front surface can be 
achieved.
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Thermal Profile in ms Annealing

Front and back side temperature as 
a function of time in flash lamp 
annealing (modeled)

Evolution of temperature pulse in flash lamp 
annealing

This is a 1 dimensional effect in flash lamp annealing, but 3 D in laser processes
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TerminologyTerminology

Ti

t

T
Bulk heating 

of wafer

Fast ramp by 
flash heating Rapid cooling by 

thermal 
conduction to bulk

Radiative
cooling of wafer

Temperature profile of device layer shown



WCJT July 14, 2005

Flash Lamp Annealing Approaches

Multiple flash lamps required to achieve desired temperature 
jumps

— Either many conventional Xe flash lamps or a few water-wall 
arc flash lamps

Some sort of pre-heating needed to raise the bulk temperature
— Either hotplate or backside lamp heating (similar to 

conventional RTP)
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Flash Lamp Annealing Players

Mattson
— Water-wall Ar arc lamps for both bulk heating and 

flash lamps
WaferMasters

— Xe arc lamps for flash, hotplate used for pre-heat
DNS

— Xe arc lamps for flash, hotplate used for pre-heat

Each has unique preferences for pre-heat profile, 
temperature ranges and flash profiles
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Temperature-Time Radiometer Data  
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♦ Patented water wall technology
♦ High pressure argon with fast time 

response
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Comparison c/w vs. flash spectrum

c/w spectrum constant 
over wide current 
range, line dominated

Flash spectrum time-
integrated through 
flash, strong increase in 
UV, Ar+ lines appear

UV cut-off dominated 
by quartz envelope
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Searching for applications… (2)

Melting ice off Canadian roads
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Flash Uniformity

Camera image of 600°C jump from Ti of 700°C 
(frame just prior to jump minus frame just after jump)
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Process Results

Two primary applications currently
— Poly activation

Improved activation of doped poly to reduce 
poly depletion—can gain 0.5-2Å in physical gate 
dielectric thickness
Somewhat easier process to integrate and should 
be in production in several fabs soon

— USJ anneal for SDE and HALO
Improved activation of SDE and HALO implants to 
reduce SCE, improve Ion

Some integration work must be done
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Impact of poly-Si Activation on CET
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Poly Activation

ms annealing shows improvement in poly depletion of ~1Å
Improvement in both p- and n-doped polysilicon

Adachi, et. al., VLSI Symoosium 2005
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BFBF22 Process ResultsProcess Results

fRTP shows significant improvement compared to best Spike RTP data.
~3 technology node extension.
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Comparison FLASH to Spike for BF2
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Variation of fRTP Peak Temperature
B in Ge pre-amorphized Silicon
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TEM Analysis of B in Ge pre-amorphized Si
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Evolution of defects, corresponding to Ostwald ripening process
No complete dissolution of defects in the crystal 
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Electrical parameters  for B in amorphous Si

• Moderate increase in electrically active dose
• Weak increase in junction depth (diffusion-less process)
• Mobility increase with temperature too

Quality of crystal improve (dissolution of EOR)
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Variation of fRTP Peak Temperature
B in crystalline Silicon
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Electrical parameters  for B in crystalline Si
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Good correspondence between Hall-effect and 4PP sheet 
resistance measurements for USJ (± 1%). 
4PP tips do not penetrate too deep
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Isochronal (t=30 s) post-annealing for Boron 
Junctions in α- and c-Silicon
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• Flash and SPEG annealed junctions are “electrically“ stable
for temperatures up to 750°C

• Dopant deactivation is observed for >750°C
• Dopant reactivation is observed for T>900°C
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Leakage as a function of doping and annealLeakage as a function of doping and anneal

To optimize leakage, must have deep enough PAI and flash superior to SPE or spike
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B2H6 Plasma Doping with He PA Results
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Sasaki et. al. 2004 VLSI Symposium
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B2H6 Plasma Doping with He PA Results
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Strained SiGe

Flash shows minimal and balanced diffusion of B and 
As in SiGe
Minimal Ge updiffusion
No relaxation of strain measurable after flash 
processing

Kohli, et. al. ECS 2004, Honolulu
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Potential Challenges

Pattern Effect
— Even with broad spectral bandwidth and wide angular variation, 

there could be some pattern effect
— We have not observed any pattern effect—so far
— Can be solved with absorber or anti-reflection layers or influenced by 

pulse width

SIMS depth profiles for B for various design-scale cells.  Pattern pitch is indicated 
by the relation that becomes small in the order of pattern type A, B, and C (A>B>C)

Ito, et. al.. IWJT 2005
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More Challenges

Stress
— Stress induced by the thermal profile can generate defects in 

the wafer or even fracture the wafer
— Can be solved by reducing pattern induced non-uniformities 

on a local scale and by properly supporting the wafer on a 
global scale

High Cost
— Flash tools are far more complex than conventional RTP tools 

and cost significantly more
— The improvement in device performance has to justify the 

additional cost
— As more tools are made, costs may be brought down
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Work to be Done

Detailed examination of As and P
— We still don’t understand all of the physics
— Measurements are difficult

Additional work on SOI and stained silicon
More device work

— Good Xj/Rs results do not necessarily translate into 
improved transistor performance

— More work is needed to optimize devices (not a 
simple plug in process)
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Summary and Conclusions

ms annealing has been demonstrated to deliver shallow, 
highly active P- and N-type junctions meeting the 45nm ITRS 
requirements and beyond 

Poly depletion is reduced on both n- and p-type polysilicon

Boron flash activation is stable with subsequent processing

Flash lamp annealing is a manufacturable approach for USJ 
formation

First application may be poly activation

Device results have been obtained, but more are needed to 
understand integration issues
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