

Cluster Implants for Advanced Productivity

Dr. Leonard Rubin Axcelis Technologies

Acknowledgements: Patrick Splinter, Michael Graf

Cluster Implant Productivity Outline

- Productivity Advantages & Challenges of Borane Implantation
- Axcelis History of Borane Implantation
- Machine Design Considerations
- Process Applications, Effects and Results
- Summary

Mass/11

1

Boron & Borane Compounds Boron (B)

- **Boron Difluoride (BF**₂) $49 \sim 4.5$
 - Decaborane (B₁₀H₁₄)

B

Octadecaborane (B₁₈H₂₂)

120		~11

~210 ~19

~'

Mass

11

3 05/24/05

"Big Borane" B	$_{10}H_{14} \& B_{18}H_{22}$
Benefits and Mo	otivation

- Can dramatically increase ultra-low energy implant throughput
- Implanter can run at much higher extraction energies
- "Drift" operation only thus no energy contamination caused by deceleration
- Same equivalent boron flux can be delivered with much lower electrical beam current
- Low angular divergence

Boranes – Challenges

- Challenges
 - Machine design considerations
 - Achieving broad application space
 - Design of production capable hardware
 - Demonstration of process equivalence

Cluster Implant Productivity Outline

- Productivity Advantages & Challenges of Borane Implantation
- Axcelis History of Borane Implantation
- Machine Design Considerations
- Process Applications, Effects and Results
- Summary

Decaborane Development History at Axcelis

- Axcelis experimented with decaborane in 1995
 - R&D efforts suspended due to insufficient temperature control in the delivery system.
- Effort restarted in 1999
- Using Decaborane, equivalent beam current on GSD200/E² platform
 - 6.5mA @ 2keV
 - 3.5mA @ 0.5keV
- Source lasted only 10-20 hours before maintenance required
- Production version not completed due to short source life and machine dedication issue

4E-9

3E-9

Decaborane Development History at Axcelis Source Technology – Temperature Control 1999 Decaborane production is dependent on arc chamber temperature **Operating temperature is less than decomposition temperature** Pressure vs. arc chamber temperature 4E-11 decaborane (116) 3E-11

(RGA collector current) Partial pressure 2E-11 2E-9 source operation 1E-11 1E-9 hydrogen (2) OE+0 0E+0 Temperature axce 8 05/24/05 Powered by Insight

Decaborane Development History at Axcelis Source Technology – Temperature Control 1999

- External temperature control
 - Circulating coolant loop around vaporizer and delivery tube maintains temperature equilibrium
- Internal temperature control
 - Circulating coolant loop through source body limits upper temperature range

Decaborane Development History at Axcelis 1999-2000 Summary

- Determined temperature range of decaborane decomposition
- Designed and built a temperature-controlled decaborane ion source
- Observed the dimer of decaborane (B₂₀H₂₈)
- Oral presentation at IIT 2000

Cluster Implant Productivity Outline

- Productivity Advantages & Challenges of Borane Implantation
- Axcelis History of Borane Implantation

Machine Design Considerations

- Process Applications, Effects and Results
- Summary

Analyzer Magnet Design

 $\frac{mv^2}{R} = qvB$

Basic magnet design: Centripetal force is balanced by magnetic force

 $\underbrace{mE}_{q} (BR)^{2}$

Mass-energy product is a good way to describe how "strong" an analyzer magnet is

Borane ions have higher mass <u>and</u> are transported at higher energy – this is challenging for standard analyzer magnet systems

Transport of B18 Existing Tool Configurations – Optics Details

Tool	Extraction Energy (kV)	Acceleration Energy (kV)	Analyzer Magnet (bend angle, radius)		
Ultra	80	None	90º,30cm		
GSD200/E ² -90	90	None	70º,54cm		
GSD200/E ² -180	90	90	70º,54cm		

Transport of B18 Existing Tool Configurations – Optics Details

Tool	Extraction Energy (kV)	Acceleration Energy (kV)	Analyzer Magnet (bend angle, radius)
Ultra	80	None	90°,30cm
GSD200/E ² -90	90	None	70º,54cm
GSD200/E ² -180	90	90	70º,54cm

Transport of B18 Existing Tool Configurations – Optics Details

Tool	Extraction Energy (kV)	Acceleration Energy (kV)	Analyzer Magnet (bend angle, radius)
Ultra	80	None	90°,30cm
GSD200/E ² -90	90	None	70º,54cm
GSD200/E ² -180	90	90	70º,54cm

Maximum Equivalent Boron Energies – B18

Maximum Equivalent Boron Energies – B18

	Maximum	Maximum	Maximum B -	Maximum B	Maximum		
	Mass x	Extraction	Equivalent	Equivalent	Total B -		
	Energy	Energy - B18	Extraction	Acceleration	Equivalent		
ΤοοΙ	(keV-AMU)	(keV)	(keV)	(keV)	Energy (keV)		
Ultra	6000	28.5	1.5	0.0	1.5		
GSD200/E ² -90	9840	46.9	2.5	0.0	2.5		
GSD200/E ² -							
180	9840	46.9	2.5	4.7	7.2		
= (Mass*Energy)/210							
17 05/24/05				a	Excelis		

Powered by Insight

Maximum Equivalent Boron Energies – B18

Tool	Maximum Mass x Energy (keV-AMU)	Maximum Extraction Energy - B1 (keV)	В	Maximum B Equivalent Extraction (keV)	Maximur Equivale Accelerat (keV)	n B ent tion	Maximum Total B - Equivalent Energy (keV)	
Ultra	6000	28.5		1.5	0.0		1.5	
GSD200/E ² -90	9840	46.9		2.5	0.0		2.5	
GSD200/E ² - 180	9840	46.9		2.5	4.7		7.2	
		= (Max	B	18 Extraction)*	*(11/210)			

Maximum Equivalent Boron Energies – B18

				\square			
	Maximum	Maximum	Maximum B	- Maximum B	Maximum		
	Mass x	Extraction	Equivalent	Equivalent	Total B -		
	Energy	Energy - B18	Extraction	Acceleration	Equivalent		
ΤοοΙ	(keV-AMU)	(keV)	(keV)	(keV)	Energy (keV)		
Ultra	6000	28.5	1.5	0.0	1.5		
GSD200/E ² -90	9840	46.9	2.5	0.0	2.5		
GSD200/E ² -							
180	9840	46.9	2.5	4.7	7.2		
= (Max Accel)*(11/210)							
				2	voolic		

Maximum Equivalent Boron Energies – B18

					\frown
	Maximum	Maximum	Maximum B -	Maximum B	Maximum
	Mass x	Extraction	Equivalent	Equivalent	Total B -
	Energy	Energy - B18	Extraction	Acceleration	Equivalent
Tool	(keV-AMU)	(keV)	(keV)	(keV)	Energy (keV)
Ultra	6000	28.5	1.5	0.0	1.5
GSD200/E ² -90	9840	46.9	2.5	0.0	2.5
GSD200/E ² -					
180	9840	46.9	2.5	4.7	7.2
				= (Max Ext) + (Max Accel)
20 05/24/05				a	xcelis

Powered by Insight

Low Energy Beam Propagation – the effects of space charge

Perveance (K) is an important beam transport parameter that determines space charge forces Example of beam expansion due to space charge:

2 keV B⁺ 10 mA

Methods for controlling space charge for low energy transport – Magnetic confinement, beamline plasma's, PEF's, etc.

Space charge is significantly improved for Boranes

					B18 delivers 18:1 dopant for given ion
	B+	BF ₂ +	B ₁₀ H _x +	B ₁₈ H _x +	charge
	(11)	(49)	(~ 120)	(~ 210)	
Dopant flux for equivalent ion current	1	1	10	18	
Ion energy for equivalent dopant velocity	1	4.45	~ 11	~ 19	
Relative space charge for equivalent dopant flux	1	0.22	~ 0.009	~ 0.0029	

Space charge is significantly improved for Borane's

	B+ (11)	BF ₂ + (49)	B ₁₀ H _x + (~ 120)	B ₁₈ H _x + (~ 210)	lon energy 19 times higher
Dopant flux for equivalent ion current	1	1	10	18	
Ion energy for equivalent dopant velocity	1	4.45	~ 11	~ 19	
Relative space charge for equivalent dopant flux	1	0.22	~ 0.009	~ 0.0029	

Space charge is significantly improved for Borane's

	B ⁺ (11)	BF ₂ + (49)	B ₁₀ H _x + (~ 120)	B ₁₈ H _x + (~ 210)	
Dopant flux for equivalent ion current	1	1	10	18	Space charge
Ion energy for equivalent dopant velocity	1	4.45	~ 11	~ 19	reduced by a factor of more than 300
Relative space charge for equivalent dopant flux	1	0.22	~ 0.009	~ 0.0029	

Reduced space charge with borane molecules results in beam size improvement – experimental evidence

Lower space charge can result in a much narrower beam profile at the wafer

Results in increased beam utilization efficiency on multi-wafer and scanned platforms

Cluster Implant Productivity Outline

- Productivity Advantages & Challenges of Borane Implantation
- Axcelis History of Borane Implantation
- Machine Design Considerations
- Process Applications, Effects and Results
- Summary

Ultra Low Energy Extension Device Investigations

Published

- 2004 Renesas/SemEquip @ IIT (B₁₈⁺; showed B⁺ equivalence)
- 2002 Agere/Axcelis (B₁₀⁺; showed B⁺ equivalence)
- 1997 Fujitsu (B₁₀⁺; showed B⁺ equivalence)
- All indications that big borane will work for extension implants

B₁₈**H**₂₂ **Spectrum**

- Typical mass spectrum
 - With mass resolution ~ 15
- Peak B₁₈ current in the range of AMU 200 – 210
 - Contains contributions ranging from ¹⁰B₁₈H₆ to ¹¹B₁₈H₂₂
 - Contribution from any B₁₇ or other B_x combinations is typically very small

2 keV B equivalent spectrum

Powered by Insight

SemEquip ClusterIon[™] Source 18 mA equivalent current @ 2 keV on Axcelis Ultra

Operator Engi	neer Supe	rvisor Deta	il Status	Help He	C3#2 iconbox	
Vacuum Interio	cks Beam	End Station	Implant	System SW	/ Ven:	
Status: InAir: Initialize A	Aligner request			Alarms O 0 More PM	tomat perat Host 1 / Count: Ok / 0	
Species	Source	Extraction	Analysis	Beam Line	Beam	
Select Species Flow Control Actual 0.02 sccm Set 0.00 sccm	Filament On Actual 0.3 A Cathode On Actual 1.0 V Actual 0.005 A Set 0.000 A	HV Power On Actual 4.7 mA Actual 39.9 kV Set 40.0 kV	Magnet On Actual 5.102 kG Actual 66.23 A Set 65.97 A Set AMU 205	Quad 2 Off Actual 0.1 n Actual 5.3 k Set 0.7 k Beamline Pressure	Auto Range On RA Range 3.3 mA V Energy 39.9 keV Obsired Beam Current 650 uA	
Gas Off ARGON Gas 1 ODE On	Source Pressure		Ion Charge 1 AMU 201.4 Resolving Aperture 14mm	Beam Mode Drift	TSDF Ar,As.Sb,Default Farader Hus Bean Current 996.9 uA	996.9 μ
Vapor 1 0 °C Heater 982 °C Oven 982 °C PHOSPHORUS Off	Magnet On Actual 0.00 A Set 0.00 A Arc On	Gap Actual 860 Set 860 Speed 30	Side 300 Extr. 299 High	Decel Supp Off Actual 0.2 n Actual 0.0 k Set 0.0 k	0.812 – 1.145 mA	
Vapor 2 0 Heater 982 Oven 982 °C	Actual 0.00000 A Set 0.00000 A Actual 0.0 V Set 50.0 V	Suppression On Actual 0.1 mA Actual 3.64 kV Set 3.60 kV	Source Injector Gas Off Actual 2.62 ccm Set 0.00 ccm	Quad 1 On Actual 0.0 m Actual 3.7 k Set 2.0 k	nA KV Display Range Samples	
Turn Control Power Off Powe	ource AMU r Off Tune	Auto Tune		Hold Endstation	,	
					2	axcel

ClusterIon[™] Source Evaluation on Axcelis 8250 – Uniformity & Dose

- B18 bare wafer uniformity roughly equivalent to B⁺ results
 - No SEF was used
 - All beams corrected to better than 0.5% non-uniformity
- Dose matching to Ultra confirmed

0.2 keV Equivalent Boron SIMS – Comparison with Ultra

- Overall SIMS profile is wellmatched to B⁺ implant
- Large difference in ¹⁰B concentrations is expected
 - Ultra uses enriched BF₃
 - B₁₈ is isotopically natural (contains ¹⁰B and ¹¹B)

Hydrogen SIMS

1.E+05

Cluster Implant Productivity Outline

- Productivity Advantages & Challenges of Borane Implantation
- Axcelis History of Borane Implantation
- Machine Design Considerations
- Process Applications, Effects and Results
- Summary

Summary

- Significant productivity improvements are possible with Borane implantations
 - Extension Implants
 - Dual Poly Gate
- Existing machines support generation and transport
 - But have limits in the maximum energy due to the analyzer magnet capability
 - Dedicated machines?
- Process integration is promising
 - Little measureable difference between borane implants and boron implants.

