Flash-Assisted RTP for Flash-Assisted Kin Hor Advanced Ultra-Shallow Junctions P. J. Timans

Mattson Technology

Outline

Motives for Millisecond Annealing

- Processing Technology
 - Flash-Assisted RTP
- Ultra-Shallow Junction Process Results
- Manufacturing Issues
- Conclusions

Opportunities for Millisecond Annealing

- The shallower S/D extensions require low resistivity, low leakage, and improved abruptness to maintain performance ⇒ high activation with almost no diffusion
- Polysilicon gate activation at high levels is required for the continued use of SiON gate dielectrics

Trends in USJ: Diffusion vs Activation

• For B-doping:

$$E_{Activ} > E_{Diff}$$

- Shorter anneal at higher T ⇒ more activation for less diffusion
- Progression:
 - Furnace
 - Soak RTP
 - Spike RTP
 - Millisecond
 Anneal

Evolution of Temperature Profiles

© Mattson2005

A Transition to Surface Heating is Needed for USJ Processing beyond the 45 nm Node

- In conventional RTP, wafer is isothermal ⇒ cooling rate limited by surface heat loss ⇒ T cycle > ~ 0.3 s.
- Shorter T cycles require surface heating

 $L_{abs} << L_{thermal diff} \sim (D_{si}t_{pulse})^{1/2} << d_{waf}$

- Rapid rise in surface T \Rightarrow large vertical T gradient (L_{abs} << L_{thermal diff})
- Fast conductive cooling with substrate as a heat-sink (L_{thermal diff} << d_{waf})
 - \Rightarrow ~ms duration thermal cycle

Methods of Millisecond Annealing

- Scanned Laser Beams
 - -Scanned spot beam
 - -Scanned line beam
- Pulsed whole-wafer exposure: Flash-Lamp Arrays
 - -Static Pre-heating (Hot-Plates)
 - Dynamic Pre-heating (Flash-Assisted RTP[™])

fRTP™ Schematic

Flash-Assisted RTP[™]: Combining Fast-Ramp RTP with Flash Surface Heating

- Allows controlled tuning of diffusion vs activation through selection of intermediate T_i
 - Minimizes stresses& pattern effects
- Maximizes throughput

Water-Wall High Intensity Arc Lamp

-Patented water wall technology

-High pressure argon with fast time response

fRTP Temperature Diagnostics - 1450nm

Fast and ultra-fast radiometers

Temperature-Time Radiometer Data

fRTP: Capable ~3 nodes beyond spike anneal

Experimental Procedure

Implantation:

- High current implantation, tilt = twist = 0° :
 - □ n-type, 200 mm Si
 - □ PAI: 30 keV ⁷⁴Ge⁺ 10¹⁵ cm⁻²
 - □ Doping: 500 eV, ¹¹B⁺, 10¹⁵ cm⁻²
 - □ Native oxide removal in dilute HF before implant
- Flash Annealing/ACTIVATION:
 - Peak T: 1275°C to 1325°C with T_i of 700°C or 825 °C
 - Ambient: 100 ppm of O_2 in N_2
- Annealing/DEACTIVATION:
 - Cleaved 2 x 2 cm² flash-annealed samples on recessed wafers in Mattson 2900 RTP
 - Process: 250°C 1050°C for a few to several hundred seconds
 - Ambient: N₂

Effect of Peak fRTP T for PAI+B implants

TEM Analysis of B in Ge pre-amorphized Si

Weak beam dark field plan-view micrographs

Evolution of defects, corresponding to Ostwald ripening process Incomplete dissolution of defects in the crystal WCJTG Nov. 10th, 2005

Electrical parameters for B in amorphous Si

WCJTG Nov. 10th, 2005

© Mattson2005

Effect of Peak fRTP T for B implants in c-Si

Electrical parameters for B in crystalline Si

No clear link between peak T and mobility

Isochronal (t=30 s) post-annealing for Boron Junctions in α - and c-Silicon

- Dopant reactivation is observed for T>900°C
- Flash of B into crystalline Si shows no deactivation

WCJTG Nov. 10th, 2005

As Annealing Behavior

Post annealing of As

Process Integration & Manufacturing Issues

Process control challenges:

- Open-Loop Process: Repeatability of energy delivery
 - Pulsed Area Sources: Energy & duration
 - □ Scanned Beams: Spot size, beam power, scan speed
- Uniformity Control:
 - Pulsed Area: Uniformity of energy density across wafer
 - Scanned Beams: Beam stability, wafer-edge effects (esp. in 2-D heat transfer mode), beam overlap (stitched fields)
 - Pattern Effects
- Process integration challenges:
 - Large temperature gradients & stresses.
 - Materials compatibility: with advanced device structures & new materials (SiGe, SOI, high-K, metal gates....)

Overlap Issues in Scanned Line Processing

- Lateral heat diffusion creates a non-uniform transition between the line-beam heated area & cold silicon.
- Material scanned twice experiences different annealing process
- Uniform processing requires very large overlap between scans ⇒ Very poor throughput

Pattern Effect Role in Millisecond Anneal Uniformity

Questions, questions, questions......

There are still many areas in need of research in millisecond annealing - the field is rich in basic physics & materials science issues

- Pattern effects
 - What are the optical properties of the patterns on advanced device wafers (at high T)?
 - How do they modulate the absorption of optical energy?
- Thermo-mechanical stresses
 - How do defects evolve under stress and temperature in the ms-time domain?
 - How do device features & implant damage distributions respond?
- Electrical activation
 - In "diffusion-less" anneals, what is happening at the atomic scale?
 - How do processes like SPE, defect annealing & electrical activation interact? What is the best implant/processing recipe?

Conclusions

- fRTP provides shallow, abrupt, highly active junction
- Junction depth is mainly limited by as-doped profiles
 - New doping technologies are needed
- B into PAI gives lower Rs, but defects remain
- B into crystalline silicon gives ~same Xj after anneal, even with deeper as-implanted junction depth
- There is some deactivation of B in pre-amorphized Si and As, but much less than with SPE
- The transition to manufacturing will require strong emphasis on temperature measurement, repeatability & uniformity control
 - Learn from RTP history
- There's a lot of work to do to understand the full potential of millisecond annealing technology!

Acknowledgements

Much of this presentation is taken from the papers:

- "Advanced activation of ultra-shallow junctions using flash-assisted RTP" W. Lerch¹, S. Paul¹, J. Niess¹, S. McCoy², T. Selinger², J. Gelpey², F.Cristiano³, F. Severac³, M. Gavelle³, S. Boninelli⁴, P. Pichler⁵, D. Bolze⁶, (EMRS conference, Strasbourg, June 2005) to be published in Mat. Sci. and Eng. B (2005)
- "Advanced Activation and Stability of Ultra-shallow Junctions using flash-assisted RTP" J. Gelpey², W. Lerch¹, S. McCoy², S. Paul¹, J. Niess¹, F. Christiano³, D. Bolze⁶ (13th IEEE International Conference on Advanced Thermal Processing of Semiconductors, Santa Barbara, Oct 2005)
- 1. Mattson Thermal Products GmbH, Dornstadt, Germany
- 2. Mattson Technology Canada, Vancouver, BC, Canada
- 3. LAAS/CNRS, Toulouse, France
- 4. CEMES/CNRS, Toulouse, France
- 5. Fraunhofer-IISB, Erlangen, Germany
- 6. IHP Frankfurt (Oder), Germany
- The work also greatly benefited from the contributions of
- D. Camm, G. Stuart, C. O'Carroll, Z. Nenyei & N. Acharya, of Mattson
- F. Roozeboom of Philips

