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Opportunities for Millisecond Annealing

" The shallower S/D 
extensions require 
low resistivity, low 
leakage, and 
improved abruptness 
to maintain 
performance # high 
activation with 
almost no diffusion

" Polysilicon gate 
activation at high 
levels is required for 
the continued use of 
SiON gate dielectrics
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Trends in USJ: Diffusion vs Activation
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" For B-doping:

— EActiv > EDiff

" Shorter anneal at 
higher T ⇒ more
activation for less
diffusion

" Progression:

— Furnace
— Soak RTP
— Spike RTP
— Millisecond 

Anneal
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Evolution of Temperature Profiles

1275°C, 1300°C, 1325°C fRTP(106 K/s RU,
                                      170 K/s RD at 1100°C)

1050°C Spike(250 K/s RU, 
            80 K/s RD,120 K/s RD)

1100°C Spike(300 K/s RU, 
             80 K/s RD, 
             120 K/s RD)

600

700

800

900

1000

1100

1200

1300

1400

1050°C 10 s Soak

Arbitrary time  (s)

P
yr

om
et

er
 te

m
pe

ra
tu

re
  (

°C
)

Times are getting shorter and temperatures higher



© Mattson2005WCJTG Nov. 10th, 2005

A Transition to Surface Heating is Needed for 
USJ Processing beyond the 45 nm Node

" In conventional RTP, wafer is isothermal 
⇒ cooling rate limited by surface heat 
loss ⇒ T cycle > ~ 0.3 s.  

" Shorter T cycles require surface heating

" A pulse of energy (tpulse ~ 1 ms) is 
absorbed at the wafer surface:

Labs << Lthermal diff ~ (Dsitpulse)1/2 << dwaf

" Rapid rise in surface T ⇒ large vertical T 
gradient (Labs << Lthermal diff)

" Fast conductive cooling with substrate as 
a heat-sink (Lthermal diff << dwaf)

⇒ ~ms duration thermal cycle

Pulse of 
Energy

Labs ~ 1-5 µm

Lthermal diff (τ ~ 1 ms)
~ 100 µm

dwaf ~ 775 µm
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Methods of Millisecond Annealing

" Scanned Laser Beams
—Scanned spot beam
—Scanned line beam

" Pulsed whole-wafer exposure: Flash-Lamp Arrays
—Static Pre-heating (Hot-Plates)
—Dynamic Pre-heating (Flash-Assisted RTPTM)
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Flash-Assisted RTP™: Combining Fast-Ramp RTP 
with Flash Surface Heating

" Allows controlled 
tuning of diffusion
vs activation 
through selection 
of intermediate Ti

" Minimizes stresses 
& pattern effects

" Maximizes 
throughput
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Water-Wall High Intensity Arc Lamp

—Patented water wall technology
—High pressure argon with fast time response
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fRTP Temperature Diagnostics – 1450nm

Fast and ultra-fast radiometers
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Temperature-Time Radiometer Data

Intermediate Temperature (Ti)
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fRTPfRTP: Capable ~3 nodes beyond spike anneal: Capable ~3 nodes beyond spike anneal
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" Implantation:
— High current implantation, tilt = twist = 0°:

$ n-type, 200 mm Si 
$ PAI: 30 keV 74Ge+ 1015 cm-2

$ Doping: 500 eV, 11B+, 1015 cm-2

$ Native oxide removal in dilute HF before implant
" Flash Annealing/ACTIVATION:

— Peak T: 1275°C to 1325°C with Ti of 700°C or 825 °C
— Ambient: 100 ppm of O2 in N2

" Annealing/DEACTIVATION:
— Cleaved 2 x 2 cm2 flash-annealed samples on recessed wafers in 

Mattson 2900 RTP
— Process: 250°C – 1050°C for a few to several hundred seconds
— Ambient: N2

Experimental Procedure
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Effect of Peak fRTP T for PAI+B implants
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• Activation 
improves 
with T

• Little 
impact on 
diffusion
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TEM Analysis of B in Ge pre-amorphized Si
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Weak beam dark field plan-view micrographs
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Electrical parameters  for B in amorphous Si

Quality of crystal improve (dissolution of EOR)

• Activation improves with peak T
• Mobility improves with peak T



© Mattson2005WCJTG Nov. 10th, 2005

Effect of Peak fRTP T for B implants in c-Si
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with T

• Less TED 
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PAI case
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Electrical parameters  for B in crystalline Si

1270 1280 1290 1300 1310 1320 1330
32
34
36
38
40

400

500

600

700

2x1014

2.5x1014

3x1014

3.5x1014

4x1014

 Rs(4PP)
 R

s
(Hall)

 Mobility

M
ob

ili
ty

  (
cm

2 V
-1
s-1

) /
/ S

he
et

 re
si

st
an

ce
  (

Ω
/s

q.
)

Temperature  (°C)

  Φelectr. active(Hall)

Φ
el

ec
tr.

 a
ct

iv
e   (

cm
-2
)

 

• Strong impact of peak T on activation
• No clear link between peak T and mobility
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Isochronal (t=30 s) post-annealing for Boron 
Junctions in αααα- and c-Silicon
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• Flash and SPEG annealed junctions are “electrically“ stable
for temperatures up to 750°C

• Dopant deactivation is observed for >750°C
• Dopant reactivation is observed for T>900°C
• Flash of B into crystalline Si shows no deactivation

c-Si

α-Si
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As Annealing Behavior
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Post annealing of As
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Process Integration & Manufacturing Issues

" Process control challenges: 
— Open-Loop Process: Repeatability of energy delivery

$ Pulsed Area Sources:  Energy & duration
$ Scanned Beams: Spot size, beam power, scan speed

— Uniformity Control:
$ Pulsed Area: Uniformity of energy density across wafer
$ Scanned Beams: Beam stability, wafer-edge effects (esp. in 

2-D heat transfer mode), beam overlap (stitched fields)
$ Pattern Effects

" Process integration challenges:
— Large temperature gradients & stresses.
— Materials compatibility: with advanced device structures & new 

materials (SiGe, SOI, high-K, metal gates…..)
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Overlap Issues in Scanned Line Processing
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•Lateral heat 
diffusion creates a 
non-uniform 
transition between 
the line-beam 
heated area & cold 
silicon.

•Material scanned 
twice experiences 
different annealing 
process

•Uniform processing 
requires very large 
overlap between 
scans ⇒ Very poor 
throughput

Lateral extent of edge 
transition region is 
greater at lower sweep 
speed



© Mattson2005WCJTG Nov. 10th, 2005

Pattern Effect Role in Millisecond Anneal Uniformity

" (Short Duration) + 
(High Power 
Density) ⇒

Large 
temperature 
gradients are 
possible

" Pattern effects over 
short length-scales 
can be far greater 
than in conventional 
RTP
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• Simulation shows ∆T~140°C for a 1 mm absorbing stripe
• For a 10 µm stripe ∆T~10°C
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Questions, questions, questions………..

" There are still many areas in need of research in millisecond 
annealing – the field is rich in basic physics & materials science issues
— Pattern effects

$ What are the optical properties of the patterns on advanced 
device wafers (at high T)?

$ How do they modulate the absorption of optical energy?
— Thermo-mechanical stresses

$ How do defects evolve under stress and temperature in the 
ms-time domain?

$ How do device features & implant damage distributions 
respond?

— Electrical activation
$ In “diffusion-less” anneals, what is happening at the atomic 

scale?
$ How do processes like SPE, defect annealing & electrical 

activation interact? What is the best implant/processing 
recipe?
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Conclusions

" fRTP provides shallow, abrupt, highly active junction
" Junction depth is mainly limited by as-doped profiles

— New doping technologies are needed
" B into PAI gives lower Rs, but defects remain
" B into crystalline silicon gives ~same Xj after anneal, even with 

deeper as-implanted junction depth
" There is some deactivation of B in pre-amorphized Si and As, but 

much less than with SPE
" The transition to manufacturing will require strong emphasis on 

temperature measurement, repeatability & uniformity control
— Learn from RTP history

" There’s a lot of work to do to understand the full potential of 
millisecond annealing technology!
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