Crunch Time Cometh
for SDE Doping Engineering:
* Messages in ITRS05…….

Michael Current
michaelcurrent@frontiersemi.com
currentsci@aol.com

* CMOS Gate scaling
* USJ options & metrologies
* Some immediate challenges

Major Proviso: ITRS05 will be officially released in mid-Dec.

All ITRS05 materials are DRAFT numbers, for discussion only.
CMOS Scaling

“Well-tempered” CMOS transistor:

\[X_j^{SDE} \sim \frac{L_{\text{gate}}}{3} \]

USJ Issues:

1. Testing <10 nm junctions.
2. Controlling leakage current.

\[L_{\text{gate}} = 30 \text{ nm} \quad 20 \text{ nm} \quad 15 \text{ nm} \quad 10 \text{ nm} \]
\[X_j^{(SDE)} = 10 \text{ nm} \quad 7 \text{ nm} \quad 5 \text{ nm} \quad 3 \text{ nm} \]
Gate Stack Scaling

CMOS scaling for control of I_{on}, I_{off} and V_{t} requires simultaneous shrinks for L_{gate}, t_{ox} and X_j(SDE).

Included in t_{ox} is the poly-Si depletion thickness, d_{poly}.

Many other factors (“process integration”) need to be balanced.
Gate Oxide Scaling (EOT)

Leakage current and Boron diffusion limits use of SiO₂ to ~1.2 to 1 nm.

Nitrided oxides are used to reduce leakage current and stop Boron penetration into the channel.

High-k dielectrics needed to reduce EOT while still limiting leakage.
Gate & Junction Leakage Current

Gate & junction leakage increases as L_{gate} scales.

Models of junction leakage include doping but not damage effects.

B. Doyle et al. (Intel Tech Journal May 02)

www.frontiersemi.com
Poly-Si Depletion

Depletion layer in poly-si increases EOT and compromises scaling.

Depletion layer thickness decreases as active dopant levels increase.

Initial applications for hot-anneals with lasers show good effects.
Equilibrium doping at ~1400 C shows a maximum for all dopants at ~5x10^{20} dopants/cm^3.

Depletion width is ~0.15 nm for max doping of ~5x10^{20} dopants/cm^3.
SDE ITRS05 (Draft expectations)

Lack of practical solutions for high-k dielectric and metal gate materials force increased shrinkage of $X_j(SDE)$ to allows L_{gate} scaling for the next 3-5 years.

$X_j(SDE) \text{ (ITRS01-04)} = 0.55*L_{gate}$

$X_j(SDE) \text{ (ITRS05)} = 0.36*L_{gate}$
Many Options for <10 nm SDE Junctions

Delivering Dopants by Implant:
* sub-keV atomic ions (B, As, P, Sb, In)
* “Cocktail” implants to limit dopant diffusion (B, F, C, etc.)
* small keV molecular ions (B_{10}H_{14}, B_{18}H_{22}, As_{2}, As_{4}, P_{2}, etc.)
* 10-20 keV cluster ions (B_{x}Ge_{y}Ar_{~10k})

Annealing:
* Improved “spike” anneals for <1 s
* “Flash” anneals at ~10 ms
* Scanned laser anneals (sub-melt and melt)

Wild card:
* ALD doping with “selective,super-epi”

Metrology:
* Rs, Io, Xj, mobility, dose, etc.
Why Short-time (1-10 ms) Anneals?

Time to achieve equilibrium doping levels decreases with increasing temperature.

Diffusion rates change slower with temperature.

Fast & hot anneals give:

* good activation
* limited diffusion
* (also limited defect annealing)

Figure 4.1 Thermal budget limitations for advanced processing. Intrinsic diffusion lengths for Boron are shown as a function of thermal cycle [Holton00] as compared to the criterion for 50% electrical activation of a 10^{15} B/cm2 implant at 250 eV [Mokhberi02]].

P. Timans; IIT04 schoolbook
Non-contact Rs & leakage current density for USJ

RsL principles

1. Light is absorbed in the wafer creating electron-hole pairs, which separate on opposites sides of the junction at \(X_j \) and a depletion layer, \(W \), forms.

2. Carriers spread out from the light beam area, in proportion to the junction sheet resistance.

3. Amount of carrier spreading is measured by the voltage signal, \(V_{out} \), and Rs is calculated.

3. Electron-hole recombination at defect sites in the depletion layer, \(W \), reduces charge in the junction.

4. Analysis of voltage signals as a function of light modulation frequency allows for calculation of leakage current.

\[
V = A e^{-kr}
\]

\[
k = \left[R_s G + i \omega R_s C_s \right]^{1/2}
\]
Surface “Photo-voltaic” Measurements

Starting Equations: Continuity, Poisson, carrier generation

\[\frac{\partial n}{\partial t} = g_n - r_n - \delta \nabla j_n \; ; \; \frac{\partial p}{\partial t} = g_p - r_p - \nabla j_p \]

\[j_n = \eta_n n \nabla \psi + D_n \nabla n \; ; \; j_p = -\eta_p p \nabla \psi - D_p \nabla p \]

\[\nabla \psi = - \left(\frac{q}{\varepsilon \varepsilon_o} \right) (p - n + N) \; ; \; g_n = g_p = \alpha \Phi (1-R) e^{-\alpha z} \]

Approximations:
1. Voltage proportional to light flux
2. Small variation in surface charge width

Solutions:
2-D exact solutions for \(V_1/V_2 \) and phase.

Measurements:
Sheet resistance, \(R_s \)
Leakage current, \(I_0 \)
Junction capacitance, \(C_s(n\text{-substrate}) \)
RsL Match to 4PP

Good matching achieved for **deep** (>50 nm) junctions.

For **USJ** (<30 nm), probe penetration, punch-through & leakage current effects produce large errors for contact probes.
High-Resolution (973 pts/wafer) RsL maps

RTP Pins: Local hot spots

![Diagram of Wafer 9 with highlighted hot spots and cool center]

- Sample: Wafer 1
- Diam = 300 mm
- Edge = 8.50 mm
- Operator: FSM
- 3/23/2005 17:56
- Temp = 23.6°C
- Rs, Ohms
- Aver = 579.7
- Std = 6.346
- Min = 551.8
- Max = 591.7
- % = 1.09
- Gain1 = 0.9987
- Gain2 = 0.9985

- Hot edges (cool center)
- "Hot spots"
USJ: RTP Uniformity: Rs and Leakage

RTP Rs Uniformity at 20 nm

Local Leakage vs Local Rs

Good annealing

Poor annealing

Wafer center: circles
R= 120 mm: triangles
ms-FLASH @ 1300 C: Rs and Leakage

0.5 keV B, 1300 C/ ~10 ms

Rs uniformity ~ 4%

High leakage in regions of high Rs (cooler anneals).

Cooler anneal regions:
- Higher Rs
- Higher leakage current
USJ: Laser Anneals: Scan Patterns

Laser beam scanned in an x-y raster pattern.

See variations in beam width in top and bottom of wafer. (Probably intentional).
Laser beam scanned in an R-theta pattern.

Strong hotter region in wafer center.
Laser Anneals

Improved laser scan uniformity.

“Hot” wafer edges with low Rs and Io.

High leakage regions at high Rs locations.

Leakage levels limited by low wafer doping (~10 Ohm-cm) with carrier recombination much deeper than implant damage.
Near-term challenges for SDE Engineering in the sub-10 nm regime

Metrology:

* Accurate measures of Rs, Io, Xj, dose, mobility, etc.

Process:

* Confirm dose uniformity at the limit of “implant” (<100 eV)
* Improve thermal control for ms-scale anneals
* Incorporate leakage current into modeling and process development procedures.

Devices:

* Improve visibility of criteria for shift to 3-D (fin-FETS, etc.)