

Full Wafer Analysis of **Ion Implanted Wafers** and **Thin Films** by Low Energy X-Ray Emission **Spectrometry (LEXES)**

Charles J. Hitzman and Charles A. Evans, Jr. Full Wafer Analysis 2326 Walsh Avenue, Bldg. H, Santa Clara, CA 95051 Phone (408) 986-9200 Fax (408) 986-8500 e-Mail <u>fwa@fullwaferanalysis.com</u> http://www.fullwaferanalysis.com

Full Wafer Analysis What is LEXES?

Technique
LowEnergyX-rayX-rayEmissionSpectrometryInstrumentShallow Probe 300 (SP300)
by CAMECA Instruments

Theory of the Analytical Method

Atomic Processes Involved in LEXES

X-ray production and detection in LEXES

2002/53004/MO/CL January 2002

Qualitative Results Examples of X-ray Spectra Acquired on 1E15 at/cm² Shallow Implant

Examples of X-ray Spectra

LPC 2

Examples of X-ray Spectra

LTAP

CAMECA Shallow Probe Range Element

Almost all of the periodic table can be analyzed.

Periodic Table																	
X																	X
H																	He
X	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg				_							AI	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89															
Fr	Ra	Ac															
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
CAMECA		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ţb	Р у	Ho	Ęr	Tm	Yb	Lu		
			90	91	92	93	94	95	26	3	2	98	120	191	102	105	
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

CAMECA Shallow Probe 300 Instrument Body

CAMECA Shallow Probe 300 Quantitative Metrology Tool for Thin Films and Shallow Implants

The LEXES Technique

CAMECA Shallow Probe 300 applied to the dosimetry of ULE to medium energy implant

Signal Variation with Dose, and Illustration of Detection Limit Issues 5keV As Implants in Si

Quantitation of X-ray Intensity (Peak – Background)

- How reliable is the X-ray intensity for determining relative concentration for similar samples?-EXCELLENT
- Are there matrix effects? Yes, but small
- Can the matrix effects be reduced or corrected? Yes
- Must a standard/reference sample be identical to the unknown sample? No
- The proof of these claims follows !!!

Conversion of LEXES X-ray Intensity Into Quantitative Concentrations

To Convert the X-ray Intensity (P-B) into Absolute Concentration or Dose, We Must Correct for the Following:

- **Energy loss** by the electrons as they penetrate the matrix,
- Efficiency of X-ray production at each depth, i.e. electron energy, and
- **Probability of the X-ray escaping** the matrix from the depth of its production.

The Mathematical Correction for the Above Effects Is **The IntriX Model**

Test of The IntriX Model

To test the IntriX Model:

- **1.** As was implanted into Si and SiO2 to the same nominal dose, 1 E 15 at/cm. sq. (Sample 1).
- 2. P was implanted into Si, SiO2, TiSi2 and TaSi2 to the same nominal dose, 1 E 15 at/cm. sq. (Sample 2).
- The **IntriX Model** was then used to quantify the results assuming that:
- The implants were all made into the same matrix, and, then calculated as
- •They were made into the correct matrix.

IntriX Model Applied to As Ion Implants

As Ion Implants

Nominal Dose	Matrix	-	LEXES Model Assuming Si Matrix	LEXES Model Assuming Correct Matrix
1.00E+15 1.00E+15	Si SiO2		7.31E+14 6.39E+14	7.31E+14 7.28E+14
		Average SD RSD	6.85E+14 6.51E+13 9.50%	7.30E+14 2.12E+12 0.29%

IntriX Model Applied to P Ion Implants

P Ion Implants

Nominal Dose	Matrix	LEXES Model Assuming Si Matrix	LEXES Model Assuming Correct Matrix
1.00E+15	Si	9.61E+14	9.61E+14
1.00E+15	SiO2	8.19E+14	9.50E+14
1.00E+15	TiSi2	1.19E+15	1.01E+15
1.00E+15	TaSi2	7.73E+14	9.65E+14
	Average	9.36E+14	9.72E+14
	SD	1.87E+14	2.64E+13
	RSD	20.03%	2.72%

LEXES Analysis Quantified For Major Constituents

AlGaN---PL vs LEXES

Conclusions--I

- Relative X-ray intensities, without correction for the specific/exact matrix, can provide relative quantitation within +/- 20%.
- The element of interest can be quantified by using a reference material containing the element of interest in a matrix of another material.
- With IntriX correction of the effects of the element in a known/defined matrix, quantitation of a few percent can be achieved.

Conclusions--II

The IntriX Model Is Highly Effective For Calculating Dose or Concentration from X-ray Intensities Produced by the Same Element in Different Matrices

Accuracy of Dose Determination Comparison with SIMS Values

- Although completely independent, SIMS and LEXES typically agrees within 5%, whatever the dopant type and dose.
- Deviation between Implanter tool values and both techniques is about 5-20%.

SIMS data were recorded with CAMECA IMS 6f equipped with Accel-Decel option.

Samples provided by S. Corcoran from Intel Inc. and P. Ronsheim from IBM

Resolving Small Dose Variations in Arsenic

Shallow Implants

Medium Energy Implants

Shallow Probe easily discriminates dose gradations of 5%. Linearity is maintained even for very shallow implants or highly doped implants (E16 at/cm²). *Uncertainty bars are smaller than the dots (1s <0.5%).*

Resolving Small Dose Variations ULE Boron Implants

500 eV Boron Implant

Shallow Probe clearly discriminates dose gradations of 2% in the 1E15 range.

LEXES absolute dose values matches implanter nominal values typically within 3%.

Statistical Process Control for LEXES ULE As Implanted into 300mm Si Wafer

Purpose of study

•To determine the long term reproducibility of the LEXES instrument.

•Value of daily reference sample over the use of an archival sensitivity factor.

<u>Sample</u>

•300mm As ion implant at 2keV, nominal dose of 1.00E+15 at/cm2.

<u>Analysis</u>

•25 points around the wafer with five (5) replicate analyses per point.

•40 analyses over three (3) month period with the wafer removed and reloaded approximately 10 times with three (3) to four (4) analytical cycles per loading.

Statistical Process Control for LEXES ULE As Implanted into 300mm Si Wafer

Statistical Process Control for LEXES ULE As Implanted into 300mm Si Wafer

Statistical Process Control for LEXES ULE As Implanted into 300mm Si Wafer

2keV As Implanted SPC Wafer	Average	RDS
Single Archival Sensitivity Factor Calibration	8.77e14	1.33%
Daily Sensitivity Factor Calibration	8.83e14	0.64%

Purpose of study

Across wafer implant uniformity.

•Wafer-to-wafer implant reproducibility.

•Precision of the LEXES technique.

Wafers studied

•Implants by AMAT Quantum III.

•Analyses by CAMECA Shallow Probe 300.

•Seven wafers were implanted with energies of 1.8keV to 2.2keV to a nominal dose of 1.0E+15.

•Each wafer was analyzed at <u>center -0.5r - 0.98r</u>.

• Five analyses per position.

Representative LEXES data for Arsenic as-implanted wafer

Measurement	0.98R	2000 eV R/2	Center	Across Wafer
1	8.62E+14	8.70E+14	8.74E+14	
2	8.68E+14	8.74E+14	8.61E+14	
3	8.66E+14	8.75E+14	8.73E+14	
4	8.65E+14	8.72E+14	8.79E+14	
5	8.61E+14	8.74E+14	8.65E+14	
Ave	8.64E+14	8.73E+14	8.70E+14	8.69E+14
SD	2.77E+12	2.20E+12	7.14E+12	5.48E+12
RSD %	0.32%	0.25%	0.82%	0.63%

For the **seven** wafers, the data was as below:

Average: 8.69E+14

SD: 9.10E+12

RSD: 1.05%

It is important to note that the global precision of **1.05% RSD** represents:

•the **within wafer uniformity** of the implanter

•the **wafer-to-wafer repeatability** of the implanter, and

•the **precision of the LEXES measurement**.

Figure 1. Dose by LEXES vs. Nominal Dose

New SPC Wafer

300 mm Wafer **Co-Implanted** with

- As 2 keV 1E 15
- Ge 1 keV 1E 15
- F 20 keV 2E 15
- C 5 keV 3E 15
- B 0.5 keV 1E 15

As Implant in SPC Wafer

Ave Dose = 7.58e14 atoms/cm2 % RSD = 0.60% Across Wafer

Ge Implant in SPC Wafer

Ave Dose = 7.86e14 atoms/cm2 % RSD = 1.13% Across Wafer

F Implant in SPC Wafer

Ave Dose = 1.83e15 atoms/cm2 % RSD = 1.35% Across Wafer

C Implant in SPC Wafer

Ave Dose = 4.67e15 atoms/cm2 % RSD = 4.62% Across Wafer

B Implant in SPC Wafer

Ave Dose = 7.53e14 atoms/cm2 % RSD = 1.64% Across Wafer

Application of LEXES to Thin Films

- Silicon Oxynitrides
- SiGe Layers
- Atomic Layer Deposition
- CoWP cap layers on Cu interconnects
- Cu/Ta/TaN stacks

LEXES Analysis

SUMMARY

- Excellent precision within an analysis
- Excellent precision over the long term
- Small matrix effects
- Matrix effects well corrected by IntriX model
- Final analysis is highly quantitative
- Full Wafer Mapping gives visual insight into within wafer and wafer-to-wafer variations

Some data courtesy of CAMECA and their colleagues.

10 points Line Scans, 15sec/point

