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Moores Law
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Scaling MOS Transistors

Voltage Potential Contours

e MOS scaling theory .E
requires scaling of all
geometric dimensions Drain

e Active dopant
concentrations must be

Increased to maintain
resistance

e Limits are being pushed
In this area
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Accelerated Scaling of
somNode — Planar Transistors
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Junction depth Xj needs to scale with Lg 0.7X/node

G. Marcyk, Tri gate announcement, Sept 17, 2002 ww  w.intel.com/research/silicon
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Why Is High Activation Important?
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e SDE resistance is a strong function of doping conce ntration

e SDE resistance will increase significantly at junct lons below
35 nm.
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Drive current and R
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®As junction depths are decreased, short channel
effects Improve showing gains im Iy, for fixed | .

eHowever, Rg, Increases very rapidly below 30 -40 nm
iesulting in |-, degradation.
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RTA and implant have been the traditional
drivers for junction scaling

Xj and Lg scaling trends
Known factors that (0.7X scaling)

control R, for 0.7X
junction scaling:

el_ow energy implant
ef-aster RTP
e Co-Impurity addition

P T = B

f

eJunction abruptness 20 {sub keV 4

Dimension {(nm)

implanter spike anneal

e SDE underdiffusion

Technology node

Junction targets for 65 nm is still TBD
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Aggressive scaling at 65nm
allows for little dopant diffusion

Implanted B11+ 2E15 0.5 keV

e 0.7X junction scaling
at 65 nm node
requires 17 nm X|.

X] for Implanted 0.5
keV B11 implant is 13
nm Xj for 1E19 conc.

How much farther can
X] be scaled?

Other constraints?
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No diffusion poses challenges
for SDE underdiffusion (XUD)
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T. Ghani, et al., VLSI symposium 2000
e SDE dimensions are scaled by 0.7X to meet Lgate target.

e Applying 0.7X scaling at 65 nm requires a 8nm XUD v  s.
17 nm X -> Lack of diffusion may make it difficult to
optimize Xj and XUD for transistor performance.
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2D junction profile

Possible solutions for XUD

e Improve junction abruptness

e Decouple XUD from Xj. Xjis
not adequate to fully
characterize the system.

2D dopant profile techniques
can help assist the
optimization of the junction.

S. Corcoran
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RTA trend - faster Is better
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e B Rs-X] benefits from spike anneal, but As Is iInsensitive

e As (NMOS) may show limited benefits from future RTA
developments

2004 WCJT meeting, Portland, OR




Future RTA developments
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Tool developments need to fecus en Impreving
cooldown rates
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0.7X Junction scaling -> 0.7X uniformity
scaling

Xj (arb units)

—&— Junction X] target
=#— Spike anneal tolerance

AT for constant %

e Simulated AT for % X] control of B11 2.0E15 0.5 keV implant.

e Any Spatial temperature nen -uniformity reduces number ofi die
with eptimal performance.

e The 65nm technology anneal selution will'be evaluat  ed based
on performance and uniformity
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Spike anneal and co -doping
effects

— Soak_RIA Spike anneals better
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Spike_RTA_B+F e Higher peak T @ X| leads
to improved solid solubility

e Less TED (higher T)

B+F co -implants show
B 0.5k, 1e15, vary Tpeak Significant RS-Xj
Improvement to spike
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Kennel et al. [IEDM 2002

Co-doping effects can yield comparable Rs-X
benefits to RTA advances.
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Fluorine co -implant

Location of co -dopant
relative to junction Is an
Important parameter.

Implant F deeper than B
for best results.

Fluorine co -doping
Improves Junction
abrutpnes . B:1e15, F:2e15

Plateau Is elevated as tail 10718 .
Is reduced. 002 004 006
Co-doping effect Is depth (um)
chemical as Si PA control

experiment shows little Review: Robertson IWJT 2001
Impact on B11 profile.
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Fluorine and Point Defects
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Kickout of Fluorine Trapping of F by Vac clusters
consumes Ints during regrowth

Mechanisms supported by ab-initior physical modeling (Dunham SISPAD
2002, Shano IEDM 2001)
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Germanium co -implants

e Effect of high Ge
concentration Is
equivalent to PA for
junction profile.

e SPE dominates co -
Implant effect.

e Effect is physical,

nOt Chemlcal' 500 1000 1500 2000 2500 3000
e Addition of Ge can depth (A)

produce strain.

~
™
&
(&)
=
@®
~
c
o
=
@®
—
ra)
c
(D)
(&)
c
o
o

B11+ 1.0E16 5 keV
Si PA 2.0E16 25 keV
Ge PA 2.0E16 50 keV

2004 WCJT meeting, Portland, OR |nte|®




SPE effects dominate co -implant effect

Boron 1.0E16 5 keV
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Boron implant conditions can not
completely amorphize Si

- Ge-2.0E16 50 kev

Y123TROE Wi154

Ge-2E16:50keV, B-E16:5keV.
ORTEMO130067-002 %
B.Davies & X.Lin

Lack of complete amorphization has significant penalt les
for dopant activation (TEM is post anneal)
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Defect engineering

e During low temperature dislocation loop
anneals, extended defects interstitial /
form clusters {311} vacancies

e These extended defects
may contain dopant atoms

e The growth and
dissolution of these
defects determines the
dopant diffusion.

e Co-doping effects can
modulate the evolution of

these effects. dopant-interstitial silicon
clusters interstitials
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Are there any useful co -doping
Interactions still to be discovered?
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More applications of other co-dopant applications
have been documented in the literature.
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Improving dopant solid
solubility
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Faster ramp rates and higher temperature to improve
dopant solid solubility
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Thermal History
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e Subsequent low temperature
anneals nucleate defects

e Extended defects can act as sinks

e Process needs to be optimized for
full thermal process history.
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Conclusion

e Aggressive scaling of Xj at 65 nm node will
present challenges in maintaining adequate XUD
for the SDE.

e Future RTA hardware improvements will require
higher peak temperatures and faster cooldown
rates.

e Junction scaling efforts will require improvements
In RTA temperature uniformity.

e Co-dopants effects can be chemical or physical.
These effects can show comparable Rs-X] benefits
to recent RTA advances.

e Noores law willl continue.
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