FRONT END PRODUCTS GROUP

Ultra-Shallow Junction Formation Techniques to Satisfy Advanced Device Requirements Susan Felch April 23, 2004

Outline

- Introduction
- Fluorine co-implantation to meet 90 nm requirements
- Use of SiGe barrier layers
- Optimization of implant conditions with advanced anneal to meet 45 nm requirements
- Critical issues for low-energy, high-dose doping
- BX-10 metrology for USJ control
- Summary

USJ CMOS Device Scaling

-				
Tech. Node	90nm	65nm	45nm	32nm
Rs	<660Ω/sq	<760Ω/sq	<830Ω/sq	<940Ω/sq
Xj	<250Å	<170Å	<120Å	<90Å
Abruptness	4.1nm/dec	2.8nm/dec	2.0nm/dec	1.4nm/dec
Anneal				
Technology	spike	transi	tion	Advanced

ITRS 2002

Device Requirements:

- Increase speed: Increase transistor drive current (Id_{SAT}), decrease capacitances
- Decrease power (Dynamic and Stand-by): Decrease resistances, decrease leakages
- Modulate with:
- Reduce short channel effect SCE (SDE Xj and abruptness)
- Minimize capacitances (overlap and lateral abruptness)
- Minimize resistances (SDE Rsheet)

Advanced CMOS device sensitivity to USJ processes and the required accuracy of doping and activation

• V_t spread of $< \pm 10$ mV implies energy accuracy of $< \pm 4 \text{ eV}$

- Peak temp variation: < ±1.5°C
- Radiance*Plus* spec: ±1°C, 3σ

Device scaling results in increased V_t roll-off sensitivity to implant energy and spike anneal peak temperature variations

Toshiba, AMAT: Proc. IIT2002, p. 185, Taos, New Mexico Sept 2002

CONFIDENTIAL

0.15

PMOS Benefits of Ge PAI and F Co-Implants

F energy optimization: SIMS profiles

Ge/2 keV/5E14 + F/2E15 ions/cm² + B/0.5keV/1E15 + 1050°C spike

• A steeper profile is formed with F energies from 10 to 20 keV.

• 18% decrease in both Xj and Rs and 36% in abruptness over the baseline (Ge+B only)

F energy optimization: SIMS profiles Ge/20 keV/1E15 + F/2E15 ions/cm²+B/0.5/1E15 + 1050°C spike

• A steeper profile is formed with F⁺ energies from 6 to 20 keV.

• Reduction of 22% in Xj, 10% in Rs and 45% in abruptness over the baseline (Ge+B only)

Ref: H.Graoui et al., MRS 2004 proceedings

Fluorine dose optimization: SIMS Profiles Ge/2keV/5E14 + F/10keV+B/0.5keV/1E15 + 1050°C spike

Ref: H.Graoui et al., MRS 2004 proceedings

Junctions formed at 0, 2, and 20 keV Ge with optimum F energy (10 keV) and the role of HF etch

APPLIED MATERIALS*

- •No Ge PAI produces similar junction, just slightly deeper.
- •2 and 20 keV Ge result in same Xj, but 2 keV Ge gives 15% activation gain.
- HF etch after shallow Ge PAI improves the junction slightly.

Fluorine SIMS profiles before and after anneal: Ge/2keV/5E14 + F/2E15 ions/cm2+B/0.5keV/1E15 + Spike

Ref: H.Graoui et al., MRS 2004 proceedings

Capabilities of F-Co Implant & RTP Processing

Conventional implant and RTP processes just meet 90nm requirements by use of Ge PAI and F co-implants.

Use of SiGe Barriers in PMOS Junction Formation

SIMS Profiles after 1050C Spike Anneal

- SiGe barrier produces a box-like profile.
- Increasing Ge content reduces junction depth but causes B pile-up at interface.

Ref: P. Thompson et al., MRS 2004 proceedingsconfidential

R_s vs. X_j for Reported Results and SiGe Data

• SiGe barrier results in significantly improved X_i, R_s, and abruptness.

Ref: P. Thompson et al., MRS 2004 proceeding SONFIDENTIAL

Advanced Anneal Capability for 65nm USJ

Sheet Resistance vs. Ge⁺ PAI Energy with Advanced Anneal

- R_s decreases as Ge⁺ PAI energy is increased.
- B dose has very small effect on R_s.
- Optimum PAI with advanced anneal is different from RTP.

APPLIED MATERIALS*

Sheet Resistance vs. Ge⁺ PAI Dose with Advanced Anneal

- R_s variation with Ge⁺ dose < variation with Ge⁺ energy.
- Location of Ge atoms relative to B atoms influences B activation.

Sheet Resistance Data for Optimum Ge⁺ PAI Energy with Advanced Anneal

- R_s for 2E15 B < for 1E15 B, with larger difference for 2E15 Ge.
- Explained by overlap of Ge and B profiles.

SIMS Profiles for PAI Optimization with Advanced Anneal

Slight diffusion of boron to Ge peak depth, improving profile abruptness. Observed for 10 keV Ge PAI.

Critical Issues for High Dose/Low Energy Doping

- Productivity
 - Increasing Doses (Rs) /Lower Energies (Xj)
 - Additional implant steps (PAI & Co-Implants to reduce TED)
- High Tilt Capability
 - Low Energy/High Dose Halo Implants
 - SDE Overlap new anneal techniques reduce lateral diffusion and do not drive dopant under gate
- Angle Control
 - Device Symmetry
 - Cone angle (from batch implanters) elimination
- Energy Purity
 - As-Implanted profile determines Xj with emerging "diffusionless" anneal technologies
- Poly Structure Fragility
 - High rotational scan speeds of batch implanters linked to damage
 yield loss

Effect of Cone Angle: Shadowing

Shadowing increases effective channel length

APPLIED MATERIALS*

Effect of Shadowing

Shadowing leads to unsymmetrical and longer channel

V_T decreases due to shadowing by 1% per degree

Single-wafer high-current implanter eliminates cone angle variation and associated V_T variation

CONFIDENTIAL

APPLIED MATERIALS*

Beam Divergence Wafer scanning method is critical

All devices receive the same angular variation

Devices see different beam angle depending on their position on the wafer

Effect of 1° beam divergence:

- 1D \rightarrow 1% shift in Vt
- 2D \rightarrow 0.1% shift in Vt

2 Dimensional Scanning is 10X less sensitive to divergent beams

Control of Gate/SD Extension Overlap using Tilt Implants

High tilt implant is a key in controlling gate/extension overlap, in particular when diffusion-less anneal is used.

BX-10 Doping module control

One tool provides multiple critical measurements for the module

BX-10 FEOL metrology: standard for in-line Xj measurement and module control

- Non-contact, fully automated, on-product wafer measurement
- Enabling, rapid detection for both implant and RTP variations
- Enables monitoring and root-cause identification of variations
- Rapid full 300 mm wafer non-uniformity

Measurement vs. theory: B doped CVD Si layers

- CVD layers form well defined, box-like junctions of known depth.
- Signal follows cosine fit predicted by theory with linear response in USJ range
- Depth resolution <1 Å. CONFIDENTIAL</p>

junction

BX-10 Carrier Illumination for USJ Metrology

Sensitivity and Accuracy for USJ In-line capability for device wafers

FRONT END PRODUCTS GROUP

Xj control for critical device performance

junction depth

Implant oxide thickness varied for NMOS extension implant

CI junction depths correspond to changes in final device performance (I_D) CI gives device speed indication weeks before parametric test

USJ Turn-Key Solution for 90nm and Many 65nm Devices

Quantum III Implant System

- Highest Productivity
- Superior Process Control
- HVM proven platform and process

Vantage Radiance*Plus*

- High Productivity
- Enhanced WiW uniformity and temp. control
- Process Integrity
- Proven in HVM

BX-10 Metrology

- Rapid, in-line measurement
- Non-destructive
- Xj, dose uniformity, PAI depth
- Pre and Post Anneal measurements

Best Known Methods

- USJ process monitoring
- PAI Optimization
- Minimizing energy contamination
- 7 years experience with USJ formation

Proven tool set and methods for doping, activation, and process control

Technology Curves for Shallow Junctions

Process and hardware improvements extend Quantum and Radiance to 90nm New technology development enables Xj/Rs scaling to continue

