

Order of Presentation

- For each material
 - Production route: from the ground to the metal
 - Commercial alloys
 - Chemical compositions
 - Mechanical and physical properties
 - Applications
 - Relationship to ion implantation
- Summary

Acknowledgements

- Signet Corp. (implantation equipment photographs)
- H. Starck colleagues
 - Coldwater, MI (Mo purification and powder production flowsheets)
 - Cleveland, OH (Mo, W rolling flowsheets)
 - Newton, MA (Ta processing flowsheets)
- ITIA (W purification flowsheets)
- Competitor brochures (some technical data)

Molybdenum

Mo Solid Solution Alloys

Alloy	Composition	Consolidation	Specification
Мо	99.95% Mo	A/C, P/M	ASTM B386, ASTM B387
25 W	25% w	P/M	Manufacturer
30 W	30% W	A/C, P/M	ASTM B386, B387
5 Re	5% Re	P/M	Manufacturer
41 Re	41% Re	P/M	Manufacturer
50 Re	47.5% Re	P/M	Manufacturer

Mo Carbide-Stabilized Alloys

Alloy	Composition	Consolidation	Specification
TZM	0.5% Ti, 0.08% Zr, 0.03% C	A/C, P/M	ASTM B386, ASTM B387
TZC	1.2% Ti, 0.3% Zr, 0.1% C	P/M	Manufacturer
MHC	1.2% Hf, 0.05% C	P/M	Manufacturer
ZHM	0.4% Zr, 1.2% Hf, 0.12% C	P/M	Manufacturer
HWM-25	25% W, 1.0% Hf, 0.07% C	P/M	Manufacturer

Mo Dispersed-Phase Alloys

Alloy	Composition	Consolidation	Specification
Z-6	0.5 vol. % ZrO ₂	P/M	Manufacturer
K-Si doped	150-200 ppm K, 300 ppm Si, 0-100 ppm Al	P/M	Manufacturer
La ₂ O ₃ doped	0.7-1.0% La as La ₂ O ₃	P/M	Manufacturer
Y_2O_3 doped	0.55% Y as Y_2O_3	P/M	Manufacturer

Molybdenum Physical Properties

- Moderate density (10.22 g.cc)
- High stiffness (≈325 GPa)
- Moderate hardness (240-280 VHN)
- Low thermal expansion ($\approx 5 \times 10^{-6} \text{ C}^{-1}$)
- Intermediate thermal conductivity (≈140 W/m·K)
- Low specific heat (≈270 J/kg·K)

Annealing Response

Annealing Response: Effect of Alloying

Mechanical Properties: Ductile-Brittle Transition

Mechanical Properties: Strength

Typical Mo Applications

- Electronics
 - Packaging & substrates (Cu-Mo-Cu)
 - Manufacturing equipment (crystal pullers, implantation)
 - Sputtering targets
 - Microwave tube components
- Metallurgical processing
 - Furnaces (elements, shielding, furniture)
 - Tooling (isothermal forging, extrusion, casting dies)
- Glass melting (electrodes, furnace components)
- Radiation equipment (X-ray targets, detector plates)
- Aerospace/military (shaped charges, rocket nozzles)

Issues for Mo in Implantation

Purity

- Contamination of ion beam

- Mo is primary concern ($^{98}Mo^{2+}$ vs. $^{11}B^{19}F_2$)
- Surface contamination (Fe, Ni, Cu)
- Bulk contamination
 - Generally quite low
 - Typical levels <<100 ppm for most</p>
 - Probably not an issue

Issues for Mo in Implantation

Evaporation/erosion

- Related to T_m
- Related to hardness
- Related to atomic mass
- Probably lower performance than W or Ta
 - → M/e issues
 - Melting point

Manufacturing Costs

- Least expensive raw material
- Readily machinable with standard techniques
 - Single-point, EDM, grinding
 - Requires additional attention to technique and equipment

Tantalum

Sons of Gwalia Mine - Australia

Electron Beam Melting

Vacuum Arc Remelting

Tantalum Alloys

Alloy	Composition	Consolidation	Specification
Та	99 . 9% Ta	EB/VAR, P/M	ASTM B364, B365, B521, B708
Ta 21⁄2W	2.5% W	EB/VAR	ASTM B364, B365, B521, B708
Ta 10W	10% W	10% W EB/VAR	
Ta 40 Nb	40% Nb EB/VAR		ASTM B364, B365, B521, B708
TA-111	8.0% W, 2% Hf	EB/VAR	Manufacturer
TA-222	10.0% W,	EB/VAR	Manufacturer
	2.5% Hf, 0.01% C		

Tantalum Physical Properties

- High density (16.6 g.cc)
- Moderate stiffness (≈185 GPa)
- Low hardness (75-100 VHN)
 - Most material sold in recrystallized condition
- > Low thermal expansion (≈6.6 x 10-6 C -1)
- Low thermal conductivity (≈62 W/moK)
- Low specific heat (≈150 J/kg•K)

Ductile-Brittle Transition

- Tantalum has none
- Ductile behavior to very low temperatures
- Atypical for BCC metals
- Lower handling risks in recrystallized condition

Typical Ta Applications

- Chemical processing (vessel linings, rupture discs, sheaths, HX tubing)
- Electronics
 - Manufacturing equipment (crystal pullers, implantation)
 - Sputtering targets
 - Capacitors
- Furnaces (elements, shielding, furniture)
- Aerospace/military (shaped charges)

Issues for Ta in Implantation

- Purity
 - Contamination of ion beam
 - M/e problems do not affect performance
 - Surface contamination less of an issue than for Mo
 - Volatile elements efficiently removed by EB/VAR process
 - High T_m elements (Nb, W, Mo) remain behind
 - 100-500 ppm residuals
 - More atoms/vol. than Mo because of density difference
 - P/M alloys can contain 100-300 ppm O, C, N
 - Are these really problems? Probably not

Issues for Ta in Implantation

Evaporation/erosion

- Evaporation is less of a problem than for Mo, not as good as W
- Erosion/sputtering a smaller effect due to atomic mass

Manufacturing Costs

- Expensive material
 - Base price $\approx 10x$ that of Mo
 - Recent availability issues
- Readily machinable
 - Requires experience because of softness
 - Problems opposite those of Mo, W

Tungsten

Typical Wolframite Upgrading Process

Concentrates Processing

Tungsten Alloys

Alloy	Composition	Consolidation	Specification
W	/ 99.95% P/M		ASTM B760
W 3Re	3% Re	P/M	Manufacturer
W 5Re	5% Re	P/M	Manufacturer
W ThO ₂	1%-3% ThO ₂	P/M	Manufacturer
K/Si doped W	50-100 ppm K, 30-50 ppm Si	P/M	Manufacturer

Tungsten Physical Properties

- High density (19.3 g.cc)
- High stiffness (≈410 GPa)
- High hardness (400-500 VHN)
- → Low thermal expansion (\approx 4.4 x 10-6 C -1)
- High thermal conductivity (≈155 W/m•K)
- Low specific heat (≈140 J/kg•K)

Strength of W vs. Temperature

DBTT Behavior of W

Typical W Applications

- Electronics
 - Packaging (WCu)
 - Manufacturing equipment (implantation)
 - Sputtering targets
- Radiation equipment
 - Shielding (heavy metal)
 - Detector plates
- Furnaces (elements, shielding, furniture)
- Aerospace/military (green bullets)

Issues for W in Implantation

Purity

- Contamination of ion beam
 - M/e problems do not affect performance
 - Surface contamination less of an issue than for Mo
 - Bulk contamination is similar to Mo, though atoms/vol. Are double at equivalent wt. % levels

Evaporation/erosion

- Evaporation problems are least
- Erosion/sputtering also are least

Manufacturing Costs

Very difficult to machine

- Single-point techniques are used by only a few
- Grinding is typical
- EDM is possible

Raw material costs between Mo and Ta

Evaporation of Refractory Metals

Summary

Material	Material Cost	Manufacturing Costs	Performance Issues
Мо	Lowest	Lowest	Highest P _v , M/e problems, embrittlement with use
(ST	Highest	Intermediate	P _v << Mo, no M/e problems, remains ductile w/ use
уу	Intermediate	Highest	P _v << <mo, no M/e problems, embrittlement with use</mo,