

HOLISTIC APPROACH TO THE UNDERSTANDING CMP-INDUCED DEFECTS

HONG JIN KIM, BRYAN EGAN

Era of Semiconductor Diversity

Source: www.globalfoundries.com

Defect and Post CMP Cleaning

Defect Scaling: micro to nano, nano to atomic scale defects are concerned

Defect of Interest in this presentation:

- Metal Flake
- Particle
- Incomplete Etch
- Backside Ring

Approaches:

- Process Flow
- Cleaner Module
- Filtration
- Facility and
 Handling

Defect and Post CMP Cleaning: what we know, what challenges are

We know traditional CMP defects: slurry particle, organic residue, metal fake, scratch We know source of CMP defects: slurry, pad, disk, CMP cleaner We know brush is critical to PCMP cleaning performance We know brush cleans wafer and dirty wafer at the same time

Challenges:

"New" types defect – very thin metal flake/film defect

Small particle detection and removal

Integrated process induced defects – upstream, downstream, integration and their combination

Process sensitive defects

Backside and edge induced defects

Thin Metallic Film I

Thin Metal Flake

- Source of leakage path
- Very thin \rightarrow Nanoflake
- Process integration related
- Detection is not easy (in particular, gate to contact)
- Surface charge is the mechanism to adhere to the surface
- Redeposit from brush during post CMP cleaning
- Brush breakin is critical to avoid metallic thin film defect

Thin Metallic Film – Integration Related

Capacitance Distribution

Thin Metallic Film II

Particle Removal

Particle Size Distribution

Particle Removal Behavior

Both small particle and large particle are problem and critical to device performance

Small particle removal condition is different from large particle removal condition

Small Particle and Embedded Defect

- Embedded Defect: block etch → yield critical
- Detection Limitation: not detected right after processing → potential excursion
- Unable to Rework/Reprocess: scrap
- Difficult Source Investigation: multiple process steps involved
- SiO₂: same material as surrounding

Large and Small Particle Removal – Importance of Filtration

Example of filtration strategy:

Large Particle: Physical Trap \rightarrow Smaller Pore Size Filter

Small Particle: Charge Trap → Surface Treatment

Effect of "Better" Filtration – additional benefit

Effect of Filtration

Condition A

Differential Pressure (DP) \rightarrow DP is impacted by filter clogging, filter clogging becomes faster depending on environmental conditions \rightarrow Potential defect source

Condition B

Advances in Post CMP Cleaning

Requirements of PCMP cleaning

- High particle removal efficiency
- All size particle removal capability "smaller" particle removal
- Minimize cross contamination
- Minimize substrate damage, ex) zero etch rate
- Brush breakin pre or in-situ
- Backside cleaning efficiency
- Eco-friendly cleaning chemical

Recent development of PCMP cleaning

- Pre brush physical cleaning & in-situ brush breakin (SPCC2018)
- Ultrasonication brush breakin (ECS Journal 2019)
- Advanced clean chemistry (ICPT 2018)
- Advanced filtration (ICPT 2018)

Most development effort is focused on PCMP cleaning and cleaner module..

Holistic Approach To Defect Control

Raw material to wafer – where is the correct/proper area?

Raw material

*) similar approach to polishing pad, conditioner, membrane...

... prior to CMP Process

Examples for microscratch defect

B Egan, ECS JSST 8(5) P3206-P3211 (2019)/ R Trivedi ICPT 2018

Defect Control Strategy

Wafer Backside Signature

Examples of Backside Signature: Chuck mark from deposit, thermal processing, clean... tools

Backside Defect Map

Effect of CMP on Wafer Backside Ring Signature

- Location \rightarrow Inner ring, outer ring
- Pattern → Match with CMP clean nozzle location
- CMP and combined downstream process make backside ring signature

CMP2, CMP3,...

CMP processed

Downstream effect

Process Condition A

Process Condition B

Process Condition C

Effect of Wafer Edge

Summary and Conclusion

Holistic Approach

- Integration is critical to defect generation
- Defect control from raw material quality, handling, environment to process
- Wafer edge and backside cleanliness
- New design for PCMP cleaning module CMP is cleaning technology

Thank you

hongjin.kim@globalfoundries.com

