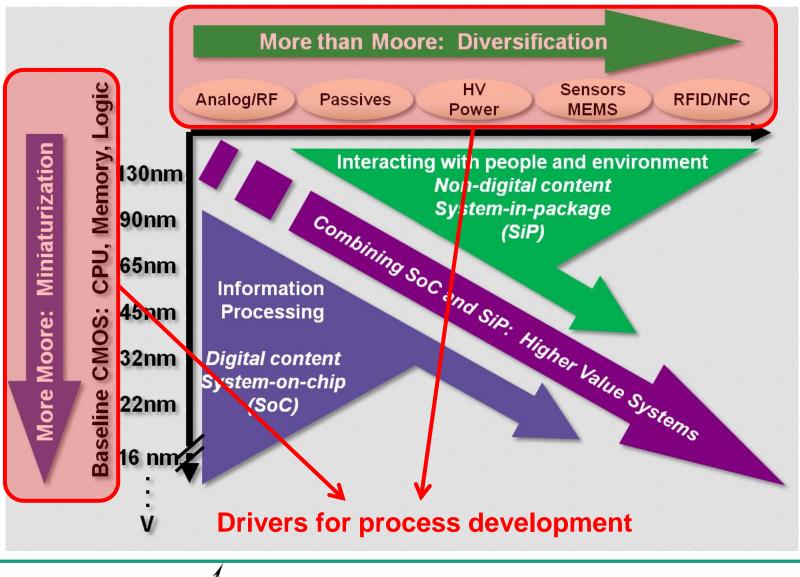

100mm - membrane carrier tuning for state of the art CMP process development in R&D environments

Ina Schubert¹, Romy Junghans¹, Ronny Martinka¹, Michael Schubert¹, <u>Knut Gottfried</u>¹ Lynn Shumway², Peter Wrschka², Dan Trojan²

A joint R&D work from

AGENDA

- General background
- Specific motivation
- Membrane carrier design
- Membrane edge impact
- Experimental work and results
- Summary & outlook



Global background

CMP in leading edge & standard CMOS

- CMP is needed for:
 - Planarization
 - Patterning (Cu-based interconnect systems / Tungsten)
- Ongoing downscaling requires:
 - ♦ Perfect process control

 - ♦ "Atomic layer" CMP
- ✓ Tool platform:
 - ✓ Leading edge / state of the art 200mm / 300mm CMP tools
 - ✓ Multiple carriers / multiple plates for very high throughput
 - ✓ Membrane carriers with multiple polish zones

CMP in More than Moore, beyond CMOS, MEMS, IoT, ...

- CMP is needed for:
 - Planarization
 - Patterning
 - Surface restoration, i.e. after wafer thinning
 - Surface perfecting, i.e. for wafer bonding
 - Pattern reveal / TSV reveal
- ♦ CMP is faced to new aspects
 - \diamond New materials, such as polymers and noble metals
 - Non-CMP-friendly layouts
 - Different substrate thicknesses / bonded wafers (compounds)
 - ♦ Thin and fragile wafers

© Fraunhofer ENAS

CMP in More than Moore, beyond CMOS, MEMS, IoT, ...

- Process requirements
 - Excellent process control
 - Very low defectivity
 - Very low non-uniformity
- Specifics
 - Good number of modest / low-volume applications
 - All wafer diameters 4 inch (and lower) is back ... at least for a while
- Tool platform:
 - Leading edge / state of the art 200mm/300mm tools (multiple plates and carriers, multi-zone membrane carriers → standard wafers, high volumes
 - Retrofitted / upgraded legacy tools → especially for low volumes and wafer sizes below 200mm

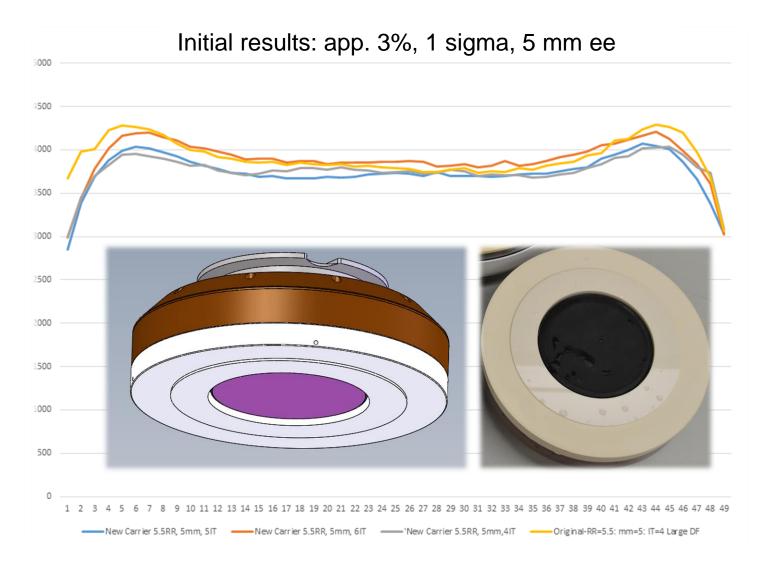
Fraunhofer ENAS CMP Lab

Specific motivation for this work

More and more demanding customer requests, such as:

- Total film thickness variation across the wafer < 100 nm
- Uniform dishing of 2 nm across the entire wafer
- Thin wafer processing
- Compound processing with high internal stress (high bow)

A lot of these requests are related to 150mm and 100mm applications!



.

. . .

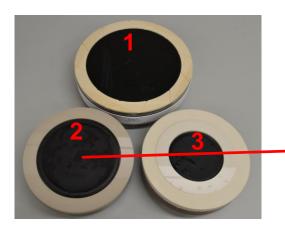
Axus T4 carrier – first versions

🗾 Fraunhofer

ENAS

TECHNISCHE UNIVERSITÄT

CHEMNITZ



© Fraunhofer ENAS

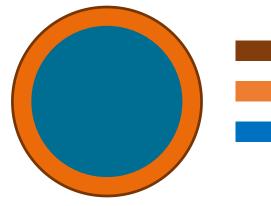
Membrane carrier design (standard carrier)

Three independent pressure control systems (standard carrier)

- Retaining ring
- > Membrane
 - gives (very uniform) downforce across the entire wafer
 - sealed clamping underneath the retaining ring at its edge (gives lower MRR)
- Inner tube / inner plate
 - wafer chuck/de-chuck (in conjunction with the membrane)
 - ➢ edge profile tuning → $P_{IT} \neq P_{MM}$

- 1) 200 mm Titan carrier (Applied Materials)
- 2) 150 mm Titan carrier (Applied Materials)
- 3) 100 mm T4 carrier (Axus Technology)

Inner platen / inner tube 150mm Titan carrier



Impact of edge area vs. carrier (membrane) size

Membrane diameter

Membrane area with edge impact (EI)

Membrane area with no/less edge impact

Membrane area calculations

Membrane diameter	(mm)	100	150	200
Total membrane area	(sqcm)	78.54	176.71	314.16
Membrane area at 5 mm El	(sqcm)	63.62	153.94	283.53
Edge area	(sqcm)	14.92	22.78	30.63
Edge area percentage	(%)	19.00	12.89	9.75
Membrane area at 3 mm El	(sqcm)	69.40	162.86	295.59
Edge area	(sqcm)	9.14	13.85	18.57
Edge area percentage	(%)	11.64	7.84	5.91
Membrane area at 6 mm El	(sqcm)	60.82	149.57	277.59
Edge area	(sqcm)	17.72	27.14	36.57
Edge area percentage	(%)	22.56	15.36	<mark>11.64</mark>
		F		1 11 Ti l

Carrier tuning options

- Segmented membranes zone carriers (known/proven for 150 / 200 / 300mm)
- Inner platen modifications
 - Thickness
 - Material
 - Edge design
 - Felt ring
 - Thickness
 - > Width
 - Position
 - Material

In this work we have investigated the performance of different inner plate types for an Axus T4 carrier.

Experimental

Two inner plate designs (**A** and **B**) have been tested

Modifications / differences:

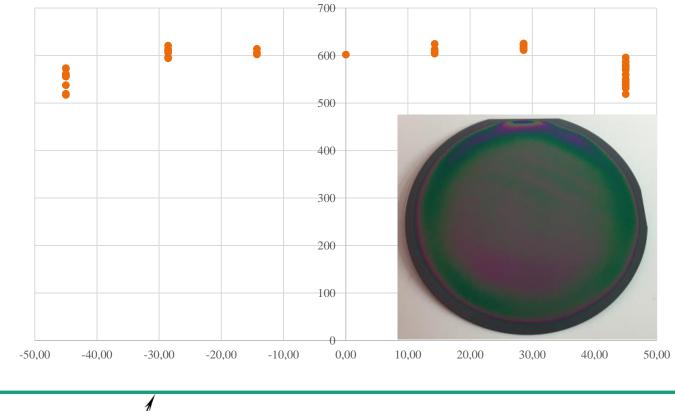
- Plate thickness (stiffness)
- Edge design
- Felt ring
 - Thickness
 - > Width
 - Position

Process setup

- Oxide CMP
- 1.2 µm PE-oxide with <0.7% non-uniformity</p>
- Klebosol 1508 slurry
- 63 rpm platen speed
- 57 rpm carrier speed

© Fraunhofer ENAS

New inner-plate model B – pressure setting #1


Incoming film

PE-oxide 1.2µm Thickness variation < 0.7%

Post-CMP

Remaining thickness: 581.14 nm Deviation (1 Sigma): 5mm edge exclusion

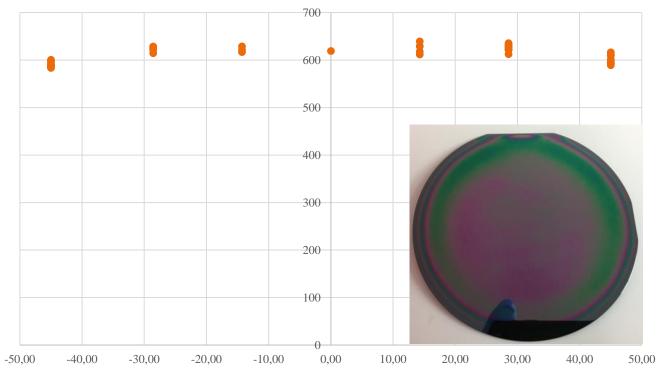
41.03 nm / 5.69%

RR 6psi - IT 5psi - MM 5psi

ENAS

TECHNOLOGY

New inner-plate model B – pressure setting #2


Incoming film

PE-oxide 1.2µm Thickness variation < 0.7%

Post-CMP

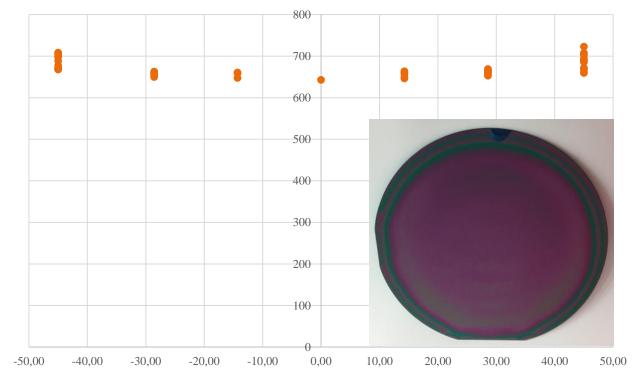
Remaining thickness: 609.51 nm Deviation (1 Sigma): 5mm edge exclusion

16.55nm / 2.71%

TECHNISCHE UNIVERSITÄT

CHEMNITZ

New inner-plate model A – pressure setting #1


Incoming film

PE-oxide 1.2µm Thickness variation < 0.7%

Post-CMP

Remaining thickness: 672.43 nm Deviation (1 Sigma): 5mm edge exclusion

19.95 nm / 2.97%

Fraunhofer

ENAS

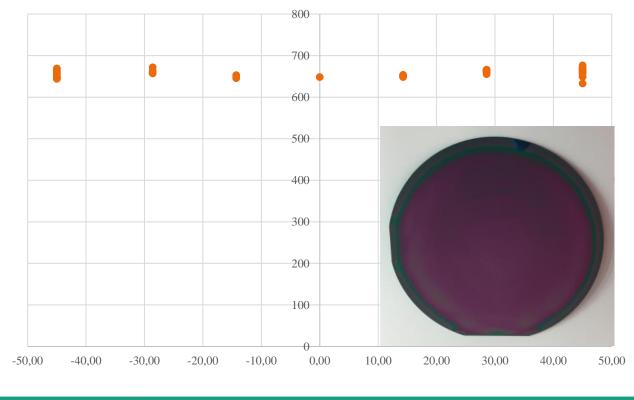
RR 5.5psi - IT 5psi - MM 5psi

New inner-plate model A – pressure setting #2

Incoming film

PE-oxide 1.2µm Thickness variation < 0.7%

Post-CMP


Remaining thickness: 657.67 nm Deviation (1 Sigma): 5mm edge exclusion

TECHNISCHE UNIVERSITÄT

CHEMNITZ

8.96 nm / 1,36%

RR 5.5psi - IT 6.5psi - MM 5psi

💹 Fraunhofer

ENAS

Summary and outlook

- Process uniformity for standard membrane carriers can be optimized/tuned by choosing appropriate pressure settings for RR, MM, IT (limitations due RR-MM pressure ratio)
- In addition, the design of the inner plate (inner tube) is another knob that can be turned for further uniformity optimization / uniformity control
 - Fast to do, just one part of the head needs to be modified
 - Cost effective
 - Enhances the potential of legacy tools
- Within first experimental trials the non-uniformity of a 100mm Axus T4 carrier could be reduced by a factor of 2 due to inner plate design modifications
- So far, all experiments are done at 5mm edge exclusion → further work is planned to figure out how close we go to the edge
- Segmented membrane / zone carriers for 100mm???
- Not shown in this work: the inner plate design can be used also to handle thin wafers (<300µm)

Thank you for your attention!

We are very willing to share more information with you! If you are interested, please contact:

Peter Wrschka PWrs

PWrschka@axustech.com

Knut Gottfried

Knut.Gottfried@enas.fraunhofer.de

