

2019 CMPUG Meeting

Pinlei Chu 04/11/2019

> "Low Particle Size Ceria STI Slurry Designed for High Performance Dishing and Nitride Loss"

Ferro's Core Technologies

- Particle engineering
- Particle surface science and modification
- Materials characterization
- Formulation chemistry

Fast Oxide CMP

Staircase CMP

MEMS

Inter-layer dielectric (ILD)

Source: www.memx.com

Polish oxide films as fast as possible while maintaining high planarization efficiency

Ferro's Manufacturing Process Flow

Ceria Polishing Mechanism

 As opposed to other abrasive types, ceria has a large surface chemical action during oxide polishing

- Studies have shown that Ce³⁺ sites on the surface of ceria particles are critical for SiO₂ removal rate
 - Veera Dandu (Clarkson thesis, also presented at 17th Annual International Symposium on Chemical Mechanical Planarization, August 12th-15th, 2012, Lake Placid, NY)

Next Generation Ceria Particle

- Particle processing modified to optimize Ce³⁺ stabilization
- Removal rates increase in parallel to Ce³⁺ density*

*Unformulated "blank" particle

Further Particle Optimization

Ce³⁺ Dense surface, more O vacancies on surface

Particle modified further to have more active surfaces to make contact with oxide substrate

1731: Ultra Fast Oxide Slurry

 Pairing the next gen. particle with complementary formulation chemistries yields an <u>ultra</u> fast oxide slurry

<u>Ceria Particle A</u>

200mm Mirra

Ferro Calcinated Ceria STI Slurry

- Our Custom made low D_{mean} solid state ceria particle is intended to minimize defects
- Employing know how for ceria particle engineering and formulations(accelerants, inhibitors...etc), we have developed a STI slurry with low D_{mean}, and is still able to maintain high RR and good selectivity in low abrasive concentrations

SRS-2303 VS Competitor A Brief Summary

Where innovation delivers performance

*Measured on Horiba 910

**Mirra 200mm, IC1000 2psi for SRS-2303 3psi for

Competitor A Platen 77 rpm Head 73 rpm, SRS-2303

Combined with 8X diluted 2298

Multi-Component STI Platform

 Ferro has developed a multi-component STI platform for our solid state ceria designed to be a mix-on-tool, either 1 or 2-Platen, STI solution

SRS-2303 & SRS2303+2298

	Blanket TEOS (A/min.)	Oxide RR* (A/min.)	Nitride RR* (A/min.)	Selectivity
SRS-2303	5400	6000	NA	NA
SRS-2303+2298	3200	3600	2	1600:1

*50/50µm feature 2 PSI, 93 RPM, IC1000 pad 200mm Mirra

SRS-2303: Polishing Stability

Stable and predictable removal rates

Ferro Confidential

SRS-2303: PV Response

Prestonian polishing behavior with a predictable response to PV

93 RPM, 150 mL/min. 200mm Mirra, TEOS Blanket 3 PSI, 150 mL/min. 200mm Mirra, TEOS Blanket

Experimental Setup

- Pattern wafers (MIT864 mask), 1st step polished to active oxide THK=1150~1250A (10% feature density) is used for comparison
- Polish 2nd step with SRS-2303 and Competitor A slurry
- Polished on AMAT Mirra 200mm polisher, 2 psi DF, 77 rpm platen, 73 rpm head and 150ml/min slurry flow for SRS-2303, 3 psi DF, 77 rpm platen, 73 rpm head and 150ml/min slurry flow for Competitor A
- End Point is determined when 500um pitch feature cleared

SRS-2303+2298(SON additive) VS Competitor A Slurry

- Platen 2 Active Oxide THK (10%-90% features, 100um size)
- SRS-2303 polished at lower DF, but still clears wafer within 30s

SRS-2303+2298(SON additive) VS Competitor A Slurry

Platen 2 Trench Loss (10%-90% features, 100um size)

Lower Trench Loss across all features with SRS-2303

SRS-2303:100um feature size 2 PSI, 77 RPM, IC1000 pad 200mm Mirra

Competitor A:100um feature size 3 PSI, 77 RPM, IC1000 pad 200mm Mirra

Ferro Confidential

SRS-2303+2298(SON additive) VS Competitor A Slurry

- Platen 2 Nitride Loss (10%-90% features, 100um size)
- Lower Nitride Loss across all features with SRS-2303

Nitride Loss

SRS-2303:50% feature density 2 PSI, 77 RPM, IC1000 pad 200mm Mirra

Competitor A:50% feature density 3 PSI, 77 RPM, IC1000 pad 200mm Mirra

Profilometry Methods

- EndPoint (EP) is defined when 500um-50% feature cleared
- Profilometry done with KLA HRP-220
- We pick 5 peaks/valleys in the middle that is leveled and average

Step Height Comparison

- SRS-2303 shows superior resistance to dishing with extended overpolishing
- SRS-2303 has tighter grouping across all density ranges, better planarity

Profile Comparison

10% Profilometry Comparison

Profile Comparison

30% Profilometry Comparison

Profile Comparison

50% Profilometry Comparison

864 Pattern wafer with KLA-2139 scan

Defect Comparison

Competitor

Small particle Big particle			Other	False	Total
Review count	87	24	18	12	141
Defect count%	61.7%	17.0%	12.8%	8.5%	

SRS2303

	Small particle	Big particle	Other	False	Total
Review count	69	4	9	12	94
Defect count%	73.4%	4.3%	9.6%	12.8%	

Defect type

Small particle

Defect type

Other

Ferro SRS-2303 Advantage

- Low D_{mean} particles have been made to minimize defect concerns associated with larger particle size
- Superior defects
- Lower D_{mean} particles, lower polishing down force
- Faster removal rate (3X) to achieve high throughput and lower costs
- High dilution ratio (0.3% ceria POU) lowers cost
- Excellent stop on nitride performance and low trench loss enables customers more processing window
- Custom slurries can be developed upon request