Agenda

• Versum Materials’ diverse CMP and pCMP clean product offerings
• W CMP
 • Balance of chemical and mechanical aspects
 • Importance of fundamental and mechanistic investigation
 • W removal kinetics
 • Characteristics of oxidized W surface film and RR model
 • Strong temperature dependence: in-process heat generation, incubation and activation behavior
• Performance table of exemplary VM’s W CMP products
• Conclusive remarks
Versum Materials

FOCUSED PURE PLAY WITH STRONG PORTFOLIO AND CAPABILITIES

• Focus on the semiconductor (IC) materials space where materials provide low cost in use/high value in use

• Leverage technology leadership, global scale, quality and reliability capabilities, and partnership with customers and OEMs to develop and commercialize the next generation technologies which will advance the industry

• Expand into adjacent segments within IC

Versum Materials participates in six of seven key semiconductor process steps
VM’s Broad Product Offerings in FEOL and BEOL Slurries and Post CMP Cleans

FEOL Dielectrics
- STI 2100/STI 2113
- STI2401/2910
- STI2402/2910
- HPD platform
- SCN 8966

 - Reduced defectivity
 - High Selectivity (Nitride, oxides and Poly)
 - Low oxide dishing

MOL MG & Contacts
- W and Co
 - W5880
 - W5900
 - DP5988; DP1118
 - Co7000 (Co Bulk)
 - Co7200 (Co Barrier)

 - Removal rate and selectivity tunability
 - Topography improvements
 - Low defectivity

BEOL interconnect
- Cu Bulk /Barrier
 - Cu3928/3929 (Cu Bulk)
 - Cu3930/Cu3086 (Cu Bulk)
 - Cu4545 (Cu Barrier)
 - BAR6630/BAR6610R (Cu Barrier)
 - BAR6620/6520 (Cu Barrier)

 - Low defectivity
 - Optimized COO
 - Tunable
 - Compatible w. new metals Co/Ru

CMP Slurries
- Proprietary Clean
 - STI 2950 (buff)
 - CeClean 2020 (BB)

 - Ceria nano particle removal
 - Reduced Defect
 - Increased PVA brush life

PCMP Cleans
- CP72B: Al HKMG
 - WClean 1090/CP98D:W
 - Co7900: Co

 - Corrosion control
 - Metal contamination
 - Reduce Particle Defect

- CP72B: Cu
 - CP98D: Cu/Co
 - CP1002: Cu/Co/Ru

 - Corrosion control
 - Organic residue removal
 - Reduce Par. Defect
Tungsten CMP

Ice

Too hard to deal with

Chemically creates soft surface layer

Mechanically removal of the soft layer

Oxidant + Catalyst

WOxHy

Abrasive particles
Fundamental and Mechanistic Investigation

Differentiated W Products with Speed, Quality and Reduced Cost

- W corrosion/mitigation
- W oxidation kinetics
- Interfacial interactions
- Colloidal chemistry
- Computation modelling
- Fluid dynamics

Electrochemistry: Tafel plots

Corrosion mitigation using corrosion inhibitor
Layered-structure of an Oxidized W Surface

- Only the very top metal oxide layer is abraded during CMP.

- W forms protective oxide films

\[
\text{Layer 0: } 100\% \text{ W-OH} \\
\text{Intermediate Layer 1: } 22\% \text{ W} + 78\% \text{ W}_{\text{oxide}} \\
\text{Intermediate Layer 2: } 65\% \text{ W} + 35\% \text{ W}_{\text{oxide}} \\
\text{W Substrate } 100\% \text{ Tungsten}
\]

* Thickness and density of the oxidized tungsten films determined by X-Ray Reflectivity analyses after oxidizing with H$_2$O$_2$ addition and post cleaning in 1 M KOH.

W Removal Rate Model

• Modified Langmuir-Hinshelwood (LH) model:

❖ n moles of reactant R in the slurry react at rate k_1 with tungsten film on the wafer to form a product layer L on the surface

\[
W + nR \xrightarrow{k_1} L \quad k_1 = A \times \exp\left(-\frac{E_a}{kT}\right)
\]

❖ Product layer L is subsequently removed by mechanical abrasion with rate k_2

\[
L \xrightarrow{k_2} L \quad k_2 = C_p \times COF \times p \times V
\]

❖ Abraded material L is carried away by the slurry

• RR in this sequential mechanism therefore is a function of both chemical and mechanical attributes of the process

\[
RR = \frac{M_{w}}{\rho} \frac{k_1 k_2}{k_1 + k_2}
\]
W Removal: An Thermally Activated Process

Heat is generated by friction and exothermic oxidation. Temperature at the wafer surface is constantly changing.

\[W + 3H_2O_2 \rightarrow H_2WO_4 + 2H_2O \quad \Delta H = -1,140 \text{ kJ/mole} \]

Reaction 2,000Å/min = 24 W
Friction = 200-400 W

Heat generation is dominated by friction.

Establishment of Temperature Monitor Capability on an Ebara Polisher
Incubation and Activation Behaviors of W CMP

W RR and max. pad temperature of time-polishing using different W slurries

300mm Ebara Polisher, 1.7 psi, hard pad

<table>
<thead>
<tr>
<th>Polish Time (Second)</th>
<th>W RR (Å/min)</th>
<th>Max Pad Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slurry I - W RR</td>
<td>Slurry II - W RR</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>2,000</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>4,000</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>6,000</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>8,000</td>
<td>80</td>
</tr>
</tbody>
</table>

Ea (eV)

<table>
<thead>
<tr>
<th></th>
<th>Slurry I</th>
<th>Slurry II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ea (eV)</td>
<td>1.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Versum Materials Confidential
Blanket RRs and W/Oxide Selectivity of VM’s Exemplary W CMP Products

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Down Force (psi)</th>
<th>W RR (Å/min)</th>
<th>Oxide RR (Å/min)</th>
<th>W/Oxide Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>W5880 Bulk</td>
<td>3</td>
<td>2000-2600</td>
<td>480-640</td>
<td>3-6</td>
</tr>
<tr>
<td>DP5988 Bulk</td>
<td>3</td>
<td>2500-3900</td>
<td><50</td>
<td>50-80</td>
</tr>
<tr>
<td>W5900 Bulk</td>
<td>1.7 – 4</td>
<td>2600-5200</td>
<td><15</td>
<td>>100</td>
</tr>
<tr>
<td>DP1118 Barrier/Buff</td>
<td>3.4</td>
<td>200~700</td>
<td>700 ~ 1000</td>
<td>0.2 - 1</td>
</tr>
</tbody>
</table>
Conclusive Remarks

• Versum Materials (VM) offers broad spectrum of CMP and pCMP clean products including tungsten (W) slurries.

• Optimal W removal balances chemical oxidation of hard metallic W into softer oxidized surface layer(s) and subsequent removal of the oxidized layer(s) by mechanical motions of abrasive particles.

• W CMP is a highly thermally activated process, showing incubation and activation behaviors that can be tuned by slurry chemistries.

• Fundamental and mechanistic understandings empower VM to develop differentiated W products per customers’ requirements.