DuPont Electronics & Imaging

July 11, 2018

Molecular Design of CMP Consumables for Advanced (≤ 10nm) Processing Technology

CMPUG 2018

Michael Mills, PhD Fellow

Molecular Design of CMP Consumables for Advanced (≤ 10nm) Processing Technology

- 1) Evolutionary growth of CMP process steps (>10nm)
- 2) Polymer molecular design at appropriate length scale for technology
- 3) Microtexture & grooving customizable for each CMP process

Molecular Design of CMP Consumables for Advanced (≤ 10nm) Processing Technology

Evolutionary growth of CMP process steps (>10nm)

- > 10nm technology; more of the same & improved process control
- ≤ 10nm technology; growth of "unique" process & unprecedented process control

Polymer molecular design at appropriate length scale for technology

Evolutionary Growth in CMP Processing Layers

	19 18							10-11 Cu Co IM (3)
rocess	17		HM (4-12)					
	16		W Plugs					
	15			9.0		Co IM (0-2)	W-TS	
	14		Co-TS					
	13				8-12 Cu (*)	W Plugs	HM	
	12					HM (2-4)	W-TS	SAC2
ЧЬ	11				W-Plugs	SAC2	SAC1	
C	10					W-TS	SAC1	Co Gate
of	9					SAC	W Gate	HM
Number	8					W-Gate	HM	POP
	7				9-10 Cu (*)	HM	POP	ILD0
	6			9-10 Cu	W-Plugs	POP	ILDO	Gate Poly
	5		7-8 Cu	w	W-TS	ILDO	Gate Poly	III-V
	4	7-8 Cu	w	AI / W Gate	AI/W Gate	Gate Poly	SiGe	SiGe
	3	w	Al Gate	POP	POP	НМ	HM	HM
	2	ILD	ILD	ILD	ILD	STI2	STI2	STI2
	1	STI	STI	STI	STI	STI1	STI1	STI1
# CMP Layer		10	12	14	15	18-25	24-30	25- 34
Technology Node		65nm	45nm	28nm	20nm	16/14/10nm	7nm	5nm
Technology Node		Planar	НКМС			FinFETs		GAA

High Performance Logic

- > 10nm more of the same
- ≤ 10nm unique materials
- ≤ 10nm process control
- ≤ 10nm wafer edge

(*) Co/TaN barrier in IM

	16						Cu (X)
Number of CMP Process	15	Mam	on				W via (X)
	14						w
	13			ILD		Cu (X)	W (X)
	12		ILD	Cu (X)		W via (X)	W (X)
	11		Cu	W via (X)		w	HM (X)
	10	1	W via (X)	TiN		W (X)	ILD4
	9	Cu	TiN	ILD4		ILD3	ILD3
	8	W via (X)	ILD4	ILD3	Cu	SoP (X)	SoP (X)
	7	w	ILD3	W (X)	W (X)	Poly (X)	Poly (X)
	6	ILD3	W (X)	ILD2	ILD	SoN (X)	SoN (X)
	5	Ox Buff (X)	ILD2	HM Buff (X)	w	HM Buff (X)	HM Buff (X)
	4	ILD2	Poly	Poly	ILD	ILD2	ILD2
	3	Poly	ILD1	ILD1	Poly	ILD1	ILD1
	2	ILD1	Ox Buff	Ox Buff	Ox Buff (X)	Ox Buff (X)	Ox Buff (X)
	1	STI	STI	STI	STI	STI	STI
# CMP Layer		10	14	17	10	14-26	17-32
Node		3Xnm	2Xnm	1Xnm	2X - 1Xnm Planar	3D 32-36L	3D 48-64L
Technology			DRAM		NAND		

<u>DRAM</u>

> 2Xnm more of the same≤ 2Xnm process control

NAND

> 3D/32 more of the same
≤ 3D/32 process control

IoT drives CMP into packaging

No CMP

- 2-4 Layers CMP
- TSV
- Wafer Thinning

CMP Process Control (≤ 10nm)

Process Technology Node

DuPont Electronics & Imaging

Molecular Design of CMP Consumables for Advanced (≤ 10nm) Processing Technology

Evolutionary growth of CMP process steps (>10nm)

Polymer molecular design at appropriate length scale for technology

- Hardness replaced by understanding of molecular structure
- SAXS determination of CMP pad process entitlement

Polyurethane Polymer Chemistry 101

Discovered in 1920s by Otto Bayer;

- hard segment (diisocyanate, diamines, and short-chain diols)
- soft segment (polyols)

DuPont Electronics & Imaging

Small-Angle X-Ray Scattering (SAXS)

SAXS directs a beam of X-rays at a sample and measures the scattering caused by X-ray interactions with the electron clouds of the sample material

Scattering is collected on a 2-D detector and can be converted to a 1-D intensity vs. scattering angle (Q) plot

Polyurethane CMP pads are made of alternating hard and soft phase segments

Structure in the sample is identifiable in 1-D SAXS patterns through the appearance of a Bragg peak

Nanoscale Details from SAXS Data

Above plots detail differences in azimuthallyaveraged 1-D SAXS patterns for large and small domain sizes (top left) and high and low polymer morphology indicators (top right)

Plot on left shows proprietary Dow[®] X-ray scattering analysis from industry-leading CMP pad formulations

Similar hardness to IC 1000™

Polymer Morphology Indicator

Molecular Design of CMP Consumables for Advanced (<10nm) Processing Technology

Evolutionary growth of CMP process steps (>10nm)

Polymer molecular design at appropriate length scale for technology

- Conditioning produced texture specific to process (pad, slurry)
- Upwards of 1,200 groove design models potentially required
- Hydrodynamic models expedite optimized solution
- Particle size interaction

Molecular Design Across All Length Scales

Optimizing Capability & Uniformity via Micro-Texture

Advanced characterization capabilities enable precise quantification:

- Pad micro-texture morphology, uniformity and consistency throughout lifetime
- Conditioning disk diamond uniformity and wear characteristics

DuPont Electronics & Imaging

Slurry Hydrodynamics and Pad-Wafer Contact

Elevation of wafer above pad is determined by force balances

- Applied polish pressure (pWafer) acts downward
- Contact pressure of asperities (pC) acts upward, at contact points
- Fluid pressure of flowing slurry (pF) acts upward, everywhere else
- Wafer elevation on pad equilibrates where forces sum to zero
- Wafer elevation determines pad-wafer contact and peak stresses

> 1,200 Groove designs & model for optimization

Optimal groove design enables full entitlement

- Stability of process control
- Slurry minimization
- Defect reduction

Optimal hydrodynamic regime balances ALL critical CMP metrics

Particle Size Interaction

- Same Exp. pad, same conditioning recipe, different nano-particle (slurry optimized)
- Nano-particle size range from 20 to 150 nm, aspect ratio from 1 to 2
- > 100% RR difference

Molecular Design of CMP Consumables for Advanced (<10nm) Processing Technology

Evolutionary growth of CMP process steps (>10nm)

- > 10nm technology; more of the same & improved process control
- ≤ 10nm technology; growth of "unique" process & unprecedented process control

Polymer molecular design at appropriate length scale for technology

- Hardness replaced by understanding of molecular structure
- SAXS determination of CMP pad process entitlement

- Conditioning produced texture specific to process (pad, slurry)
- Upwards of 1,200 groove design models potentially required
- Hydrodynamic models expedite optimized solution
- Particle size interaction

Acknowledgements

DuPont Electronics & Imaging

CMP Technologies R&D

- Applications R&D Team
- Pad R&D Team
- Slurry R&D Team

Thank You

©2018 DowDuPont, The Dow Chemical Company, DuPont. All rights reserved. ®™ Trademark of DowDuPont, The Dow Chemical Company, E.I. du Pont de Nemours and Company, or their affiliates.